Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 132(16): 5799-802, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20361797

RESUMEN

The first fully automated small-molecule robotic X-ray diffractometer is described. After demonstrating the utility of the instrument using multiple samples of ammonium bitartrate, we investigated the conformational chirality of diphenyl dichalcogenide (E(2)Ph(2), where E = S, Se, or Te). Structural and computational studies suggest that the two enantiomers are energetically indistinguishable. Therefore, it was unsurprising that we found (in 35 suitable data collections) the proportion 0.51:0.49 of M-S(2)Ph(2) to P-S(2)Ph(2) in the bulk sample. Interestingly, after 65 data collections of Te(2)Ph(2), (46 provided suitable data sets), we found the proportion 0.72 +/- 0.13 of M-Te(2)Ph(2), suggesting there could be a statistically significant preference for the M-enantiomer in the sample examined here. We found that Se(2)Ph(2) underwent homochiral crystallization, with all 24 crystals being M. Our experiments may represent a salutary lesson in statistical analysis.

2.
Behav Ecol Sociobiol ; 71(12): 170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29167596

RESUMEN

ABSTRACT: Vocalisations form a key component of the social interactions and foraging behaviour of toothed whales. We investigated changes in calling and echolocation behaviour of long-finned pilot whales between foraging and non-foraging periods, by combining acoustic recordings and diving depth data from tagged individuals with concurrent surface observations on social behaviour of their group. The pilot whales showed marked vocal variation, specific to foraging and social context. During periods of foraging, pilot whales showed more vocal activity than during non-foraging periods (rest, travel). In addition to the expected increase in echolocation activity, call rates also increased, suggesting that pilot whales communicate more during foraging. Furthermore, calls with multiple inflections occurred more often immediately before and after foraging dives and during the early descent and late ascent phases of foraging dives. However, these calls were almost never detected at diving depths of the tagged whale beyond 350 m. Calls with no or few inflections were produced at all times, irrespective of diving depth of the tagged whale. We discuss possible explanations for the distinct vocal variation associated with foraging periods. In addition, during non-foraging periods, the pilot whales were found to be more silent (no calling or echolocation) in larger, more closely spaced groups. This indicates that increased levels of social cohesion may release the need to stay in touch acoustically. SIGNIFICANCE STATEMENT: Social toothed whales rely on vocalisations to find prey and interact with conspecifics. Species are often highly vocal and can have elaborate call repertoires. However, it often remains unclear how their repertoire use correlates to specific social and behavioural contexts, which is vital to understand toothed whale foraging strategies and sociality. Combining on-animal tag recordings of diving and acoustic behaviour with observations of social behaviour, we found that pilot whales produce more calls during foraging than during non-foraging periods. Moreover, highly inflected calls were closely associated to the periods around and during foraging dives. This indicates enhanced communication during foraging, which may, for example, enable relocation of conspecifics or sharing of information. Whales reduced their vocal activity (calling and echolocation) at increased levels of social cohesion, indicating that in certain behavioural contexts, closer association (i.e. more closely spaced) may release the need to stay in touch acoustically.

3.
J Appl Ecol ; 53(6): 1642-1652, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27867217

RESUMEN

As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts.Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another.Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause.There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 µPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA