Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(14): 5194-5200, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28300400

RESUMEN

The reduction of Pd(II) intermediates to Pd(0) is a key elementary step in a vast number of Pd-catalyzed processes, ranging from cross-coupling, C-H activation, to Wacker chemistry. For one of the most powerful new generation phosphine ligands, PtBu3, oxidation state Pd(I), and not Pd(0), is generated upon reduction from Pd(II). The mechanism of the reduction of Pd(II) to Pd(I) has been investigated by means of experimental and computational studies for the formation of the highly active precatalyst {Pd(µ-Br)(PtBu3)}2. The formation of dinuclear Pd(I), as opposed to the Pd(0) complex, (tBu3P)2Pd was shown to depend on the stoichiometry of Pd to phosphine ligand, the order of addition of the reagents, and, most importantly, the nature of the palladium precursor and the choice of the phosphine ligand utilized. In addition, through experiments on gram scale in palladium, mechanistically important additional Pd- and phosphine-containing species were detected. An ionic Pd(II)Br3 dimer side product was isolated, characterized, and identified as the crucial driving force in the mechanism of formation of the Pd(I) bromide dimer. The potential impact of the presence of these side species for in situ formed Pd complexes in catalysis was investigated in Buchwald-Hartwig, α-arylation, and Suzuki-Miyaura reactions. The use of preformed and isolated Pd(I) bromide dimer as a precatalyst provided superior results, in terms of catalytic activity, in comparison to catalysts generated in situ.

2.
Dalton Trans ; 48(20): 6910-6920, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31038129

RESUMEN

In order to address outstanding questions about ruthenium complexes in complex biological solutions, 19F NMR spectroscopy was used to follow the binding preferences between fluorinated RuII(η6-arene)(bipyridine) complexes and protected amino acids and glutathione. Reporting what ruthenium compounds bind to in complex environments has so far been restricted to relatively qualitative methods, such as mass spectrometry and X-ray spectroscopic methods; however, quantitative information on the species present in the solution phase cannot be inferred from these techniques. Furthermore, using 1H NMR, in water, to distinguish and monitor a number of different complex RuII(η6-arene) adducts forming is challenging. Incorporating an NMR active heteroatom into ruthenium organometallic complexes provides a quantitative, diagnostic 'fingerprint' to track solution-phase behaviour and allow for unambiguous assignment of any given adduct. The resulting 19F NMR spectra show for the first time the varied, dynamic behaviour of organoruthenium compounds when exposed to simple biomolecules in complex mixtures. The rates of formation of the different observed species are dramatically influenced by the electronic properties at the metal, even in a closely related series of complexes in which only the electron-donating properties of the arene ligand are altered. Preference for cysteine binding is absolute: the first quantitative solution-phase evidence of such behaviour.


Asunto(s)
Aminoácidos/análisis , Complejos de Coordinación/química , Flúor/química , Rutenio/química , Complejos de Coordinación/síntesis química , Cisteína/química , Halogenación , Cinética , Ligandos , Estructura Molecular , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA