Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Sci Sports Exerc ; 23(5): 631-5, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-2072843

RESUMEN

This study presents the concept of constant (iso-) accelerative and decelerative exercise and compares concentric and eccentric torque output during isoaccelerative and isodecelerative movements with that during comparable constant velocity (isokinetic) conditions. Twelve men (19-42 yr) performed maximal voluntary concentric and eccentric knee extensions at velocities of 120 and 240 degrees.s-1 (isokinetic) and at accelerations of 180 and 720 degrees.s-2 (both isoaccelerative and isodecelerative) between 10 degrees and 90 degrees knee angles. At 50 degrees, the 180 and 720 degrees.s-2 tests had velocities of 120 and 240 degrees.s-1, respectively, and thus torque comparisons could be made at a corresponding position and velocity. No difference was seen among the isoaccelerative, isodecelerative, or isokinetic angle- and velocity-specific torques for either the concentric or eccentric tests (P greater than 0.05). The results demonstrated that, under conditions of maximal voluntary effort, movement speed as such (within the range studied) was the essential determinant of muscle force--not whether this speed was attained during accelerative, decelerative, or constant velocity movements. As a testing and training modality, the controlled acceleration technique, particularly eccentric deceleration and concentric accleration, appears to offer advantages as compared with existing methods, since it more faithfully reflects the contraction conditions during natural strength-requiring movements.


Asunto(s)
Ejercicio Físico/fisiología , Adulto , Humanos , Cinética , Rodilla/fisiología , Masculino , Movimiento/fisiología , Contracción Muscular
2.
Int J Sports Med ; 26(1): 45-52, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15643534

RESUMEN

The purpose of this study was to compare pure eccentric and concentric strength training regarding possible specific effects of muscle action type on neuromuscular parameters, such as a decreased inhibition during maximal voluntary eccentric actions. Two groups of young healthy adult men performed 10 weeks of either eccentric or concentric unilateral isokinetic knee extensor training at 90 degrees.s(-1), 4 sets of 10 maximal efforts, 3 days a week. Knee extensor torque and surface EMG from the quadriceps and hamstring muscle groups were collected and quantified in a window between 30 and 70 degrees knee angle (range of motion 90-5 degrees ) during maximal voluntary eccentric and concentric knee extensor actions at 30, 90, and 270 degrees.s(-1). Changes in strength of the trained legs revealed more signs of specificity related to velocity and contraction type after eccentric than concentric training. No major training effects were present in eccentric to concentric ratios of agonist EMG or in relative antagonist (hamstring) activation. Thus, for the trained leg, the muscle action type and speed specific changes in maximal voluntary eccentric strength could not be related to any effects on neural mechanisms, such as a selective increase in muscle activation during eccentric actions. Interestingly, with both types of training there were specific cross-education effects, that is, action type and velocity specific increases in strength occurred in the contralateral, untrained, leg, accompanied by a specific increase in eccentric to concentric EMG ratio after eccentric training.


Asunto(s)
Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Educación y Entrenamiento Físico/métodos , Adulto , Electromiografía , Humanos , Rodilla/fisiología , Masculino , Muslo , Torque
3.
Eur J Appl Physiol ; 81(1-2): 54-61, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10552267

RESUMEN

The main purpose of this study was to investigate the changes in anthropometric measures and muscle strength that occur during puberty in children from the age of 11 to 16 years. Special attention was paid to possible gender- and muscle action-type-specific alterations in torque/velocity and EMG/velocity characteristics. Sixteen children participated in the study (9 boys and 7 girls). Eccentric and concentric muscle strength was measured on an isokinetic dynamometer at angular velocities of 45, 90 and 180 degrees x s(-1). Simultaneously, a surface electromyogram (EMG) was recorded from the quadriceps muscle. At the age of 11, the boys and girls exhibited equal anthropometric measures and strength performance. In both genders, body measures and muscle strength increased significantly during the 5-year period, with larger increases being recorded for the boys. In addition, the boys increased selectively their eccentric torque per body mass, indicating an action-type-specific change in muscle quality. The general shape of the torque/velocity relationship exhibited an adult-like pattern both before and after puberty, and did not differ between genders. Both pre- and postpuberty, myoelectric activity was generally lower during eccentric than concentric actions, the highest values occurring for both genders in the concentric 180 degrees x s(-1) test. Ratios of eccentric to concentric torque per EMG, which reflect electromechanical efficiency, showed no significant changes with age. A significant velocity- and gender-specific change in electromechanical efficiency was observed at the highest speed at postpuberty, where the ratio for the girls was higher than for the boys.


Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/fisiología , Pubertad/fisiología , Adolescente , Antropometría , Niño , Electromiografía , Femenino , Humanos , Masculino , Factores de Tiempo , Torque
4.
Eur J Appl Physiol Occup Physiol ; 71(2-3): 180-6, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-7588687

RESUMEN

The contractile properties of the quadriceps muscle were measured in seven healthy male subjects before, during and after prolonged cycling to exhaustion. Special efforts were made to obtain measurements immediately after exercise. The exercise intensity corresponded to about 75% of estimated maximal O2 uptake and time to exhaustion was mean 85 (SEM 9) min. At the end of the cycling heart rate and perceived exertion for the legs were 94% and 97% of maximal values, respectively. Maximal voluntary isometric force (MVC) had decreased after 5 min of exercise to a mean 91 (SEM 4)% of the pre-exercise value (P < 0.05) and decreased further to a mean 82 (SEM 6) and mean 66 (SEM 5)% after 40-min cycling and at exhaustion, respectively. A new finding was that during recovery reversal of MVC occurred in different phases where the half recovery time of the initial rapid phase was about 2 min. The MVC was a mean 80 (SEM 2)% of the pre-exercise value after 30 min and was not affected by superimposed electrical stimulation. Maximal voluntary concentric and eccentric forces decreased to 74% and 80% of initial values at exhaustion (P < 0.05). The kinetics of isometric contraction expressed as the time between 5% and 50% of tension (rise time) and the time between 95% and 50% of tension (relaxation time) were not significantly affected by the prolonged cycling. The electromechanical delay measured as the time between the first electrical stimulus and 5% of tension decreased from a mean 32 (SEM 1) ms at rest to a mean 26.6 (SEM 0.6) ms at fatigue (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Contracción Muscular , Músculos/fisiología , Esfuerzo Físico , Adulto , Ciclismo , Estimulación Eléctrica , Humanos , Contracción Isométrica , Pierna , Masculino , Fatiga Muscular , Relajación Muscular , Factores de Tiempo
5.
Acta Physiol Scand ; 169(1): 63-9, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10759612

RESUMEN

The torque-velocity relationship, obtained during in situ conditions in humans, demonstrates a levelling-off of eccentric torque output at the isometric torque level, at least for knee extensor actions. In contrast, the in vitro force-velocity relationship for animal muscle preparations is characterized by a sharp rise in eccentric force from isometric maximum. A force-regulating 'protective' mechanism has been suggested during maximal voluntary high-tension eccentric muscle actions. To investigate this phenomenon, maximal voluntary and three different levels of submaximal, electrically induced torques were compared during isometric and low velocity (10, 20 and 30 degrees s-1) isokinetic eccentric and concentric knee extensor actions in 10 healthy, moderately trained subjects. Eccentric torque was higher than isometric during electrically evoked, but not during maximal voluntary muscle actions. In contrast, concentric torque was significantly lower than isometric for both maximal voluntary and submaximal, electrically evoked conditions. Comparisons of normalized torques (isometric value under each condition set to 100%) demonstrated that the maximal voluntary eccentric torque had to be increased by 20%, and the isometric by 10% in order for the maximal voluntary torque-velocity curve to coincide with the electrically stimulated submaximal ones. These results support the notion that a tension-regulating mechanism is present primarily during eccentric maximal voluntary knee extensor actions.


Asunto(s)
Contracción Isométrica/fisiología , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Citoesqueleto de Actina/fisiología , Adulto , Estimulación Eléctrica , Potenciales Evocados/fisiología , Humanos , Masculino , Tiempo de Reacción/fisiología , Torque , Volición/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-7957161

RESUMEN

The purpose of this investigation was to compare children and adults of both genders with respect to torque-velocity, electromyogram (EMG)-velocity and torque-EMG relationships during maximal voluntary knee extensor muscle actions. Four groups of ten subjects each were studied comprising 11-year-old girls and boys and female and male physical education students (22-35 years). Maximal voluntary eccentric (lengthening) and concentric (shortening) actions of the knee extensors were performed at the constant velocities of 45, 90 and 180 degrees.s-1. Average values for torque and EMG activity, recorded by surface electrodes from the quadriceps muscle, were taken for the mid 40 degrees of the 80 degrees range of motion. The overall shapes of the torque- and EMG-velocity relationships were similar for all four groups, showing effects of velocity under concentric (torque decrease and EMG increase) but not under eccentric conditions. Eccentric torques were always greater than velocity-matched concentric ones, whereas the eccentric EMG values were lower than the concentric ones at corresponding velocities. Torque output per unit EMG activity was clearly higher for eccentric than for concentric conditions and the difference was of similar magnitude for all groups. Thus, the torque-EMG-velocity relationships would appear to have been largely independent of gender and to be fully developed at a prepubertal age.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Niño , Electromiografía , Femenino , Humanos , Masculino , Pubertad , Caracteres Sexuales
7.
Int J Sports Med ; 10(3): 175-80, 1989 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2777436

RESUMEN

The purpose of this study was to assess and compare eccentric (ECC) and concentric (CONC) torque output of the quadriceps and hamstring muscles and to analyze the effect of gravity effect torque (GET) correction on the calculation of the hamstring/quadriceps peak torque quotient (H/Q quotient). Twenty female subjects performed maximal voluntary CONC and ECC contractions of the quadriceps and hamstring muscles at five isokinetic lever arm velocities from 60 degrees/s to 360 degrees/s. Peak torque was measured and corrected for GET. Mean ECC torque did not significantly change with increasing ECC velocity for either the quadriceps or hamstring muscles (P greater than 0.05). Mean CONC torques were significantly lower than the corresponding ECC torques (P less than 0.05) and decreased with increasing CONC velocity. At each test velocity, the CONC H/Q quotient was significantly lower than the corresponding ECC H/Q quotient (P less than 0.05). Mean H/Q quotients did not significantly change with increasing velocity for either the CONC or ECC tests (means: 0.46 and 0.57; P greater than 0.05). Mean H/Q quotients not corrected for GET significantly increased with increasing velocity for the CONC (0.61 to 0.78; P less than 0.05), but not ECC tests (0.66 to 0.71; P greater than 0.05). The results indicate that the ECC torque-velocity curve is essentially level for both quadriceps and hamstring muscles. The present findings point strongly toward the necessity of correcting for GET when calculating both CONC and ECC H/Q quotients.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Pierna/fisiología , Músculos/fisiología , Muslo/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos
8.
Eur J Appl Physiol Occup Physiol ; 79(1): 49-57, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10052660

RESUMEN

The purpose of this study was to compare pure eccentric and concentric isokinetic training with respect to their possible specificity in the adaptation of strength and morphology of the knee extensor muscles. Ten moderately trained male physical education students were divided into groups undertaking eccentric (ETG) and concentric (CTG) training. They performed 10 weeks of maximal isokinetic (90 degrees x s(-1)) training of the left leg, 4x10 repetitions - three times a week, followed by a second 10-week period of similar training of the right-leg. Mean eccentric and concentric peak torques increased by 18% and 2% for ETG and by 10% and 14% for CTG, respectively. The highest increase in peak torque occurred in the eccentric 90 degrees x s(-1) test for ETG (35%) whereas in CTG strength gains ranged 8%-15% at velocities equal or lower than the training velocity. Significant increases in strength were observed in the untrained contra-lateral leg only at the velocity and mode used in ipsilateral training. Cross-sectional area of the quadriceps muscle increased 3%-4% with training in both groups, reaching statistical significance only in ETG. No major changes in muscle fibre composition or areas were detected in biopsies from the vastus lateralis muscle for either leg or training group. In conclusion, effects of eccentric training on muscle strength appeared to be more mode and speed specific than corresponding concentric training. Only minor adaptations in gross muscle morphology indicated that other factors, such as changes in neural activation patterns, were causing the specific training-induced gains in muscle strength.


Asunto(s)
Músculo Esquelético/fisiología , Aptitud Física/fisiología , Adaptación Fisiológica/fisiología , Adulto , Lateralidad Funcional/fisiología , Humanos , Pierna/anatomía & histología , Pierna/inervación , Pierna/fisiología , Imagen por Resonancia Magnética , Masculino , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/inervación , Tamaño de los Órganos/fisiología
9.
Acta Physiol Scand ; 140(1): 17-22, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2275401

RESUMEN

The purpose of this study was to examine the effects of electrical stimulation on torque output during knee extension. Nine well-trained males (19-43 years) performed maximal voluntary, electrically evoked and superimposed eccentric and concentric knee extensions at velocities of 60, 180 and 360 degrees s-1, plus an isometric test (torque was always recorded at a 60 degree knee angle). Fifty-hertz stimulation was applied percutaneously at the maximum tolerated voltage (140-200 V). By superimposing electrical stimulation, eccentric torque could be increased by an average of 21-24% above the voluntary level (P less than 0.05). No corresponding differences were observed between superimposed and voluntary torques under isometric or concentric conditions. Electrically evoked torque also exceeded voluntary torque under eccentric conditions (11-12%, P less than 0.05), but was less under isometric and concentric conditions (-10 to -52%, P less than 0.05). Within the limitations of the study, it was concluded that eccentric knee extension torque under maximal voluntary conditions does not represent the maximal torque-producing capacity. The action of a neural inhibitory mechanism was proposed as an explanation for this finding. If active, this mechanism may protect against the extreme muscle tension that could otherwise develop under truly maximal eccentric conditions.


Asunto(s)
Estimulación Eléctrica , Articulación de la Rodilla/fisiología , Contracción Muscular , Relajación Muscular , Adulto , Fenómenos Biomecánicos , Humanos , Masculino
10.
Eur J Appl Physiol Occup Physiol ; 57(5): 526-30, 1988.
Artículo en Inglés | MEDLINE | ID: mdl-3396567

RESUMEN

A new computerized dynamometer (the SPARK System) is described. The system can measure concentric and eccentric muscle strength (torque) during linear or nonlinear acceleration or deceleration, isokinetic movements up to 400 degrees.s-1, and isometric torque. Studies were performed to assess: I. validity and reproducibility of torque measurements; II. control of lever arm position; III. control of different velocity patterns; IV. control of velocity during subject testing; and, V. intra-individual reproducibility. No significant difference was found between torque values computed by the system and known torque values (p greater than 0.05). No difference was present between programmed and external measurement of the lever arm position. Accelerating, decelerating and isokinetic velocity patterns were highly reproducible, with differences in elapsed time among 10 trials being never greater than 0.001 s. Velocity during concentric and eccentric isokinetic quadriceps contractions at 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1 never varied by more than 3 degrees.s-1 among subjects (N = 21). Over three days of testing, the overall error for concentric and eccentric quadriceps contraction peak torque values for 5 angular velocities between 30 degrees.s-1 and 270 degrees.s-1 ranged from 5.8% to 9.0% and 5.8% to 9.6% respectively (N = 25). The results indicate that the SPARK System provides valid and reproducible torque measurements and strict control of velocity. In addition, the intra-individual error is in accordance with those reported for other similar devices.


Asunto(s)
Contracción Muscular , Músculos/fisiología , Esfuerzo Físico , Adulto , Prueba de Esfuerzo/métodos , Humanos , Contracción Isométrica , Masculino
11.
Artículo en Inglés | MEDLINE | ID: mdl-1396638

RESUMEN

Physiological responses to repeated bouts of short duration maximal-intensity exercise were evaluated. Seven male subjects performed three exercise protocols, on separate days, with either 15 (S15), 30 (S30) or 40 (S40) m sprints repeated every 30 s. Plasma hypoxanthine (HX) and uric acid (UA), and blood lactate concentrations were evaluated pre- and postexercise. Oxygen uptake was measured immediately after the last sprint in each protocol. Sprint times were recorded to analyse changes in performance over the trials. Mean plasma concentrations of HX and UA increased during S30 and S40 (P less than 0.05), HX increasing from 2.9 (SEM 1.0) and 4.1 (SEM 0.9), to 25.4 (SEM 7.8) and 42.7 (SEM 7.5) mumol.l-1, and UA from 372.8 (SEM 19) and 382.8 (SEM 26), to 458.7 (SEM 40) and 534.6 (SEM 37) mumol.l-1, respectively. Postexercise blood lactate concentrations were higher than pretest values in all three protocols (P less than 0.05), increasing to 6.8 (SEM 1.5), 13.9 (SEM 1.7) and 16.8 (SEM 1.1) mmol.l-1 in S15, S30 and S40, respectively. There was no significant difference between oxygen uptake immediately after S30 [3.2 (SEM 0.1) l.min-1] and S40 [3.3 (SEM 0.4) l.min-1], but a lower value [2.6 (SEM 0.1) l.min-1] was found after S15 (P less than 0.05). The time of the last sprint [2.63 (SEM 0.04) s] in S15 was not significantly different from that of the first [2.62 (SEM 0.02) s]. However, in S30 and S40 sprint times increased from 4.46 (SEM 0.04) and 5.61 (SEM 0.07) s (first) to 4.66 (SEM 0.05) and 6.19 (SEM 0.09) s (last), respectively (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Ejercicio Físico/fisiología , Hipoxantinas/sangre , Lactatos/sangre , Consumo de Oxígeno/fisiología , Ácido Úrico/sangre , Adulto , Humanos , Masculino , Carrera , Estadística como Asunto , Factores de Tiempo
12.
Eur J Appl Physiol Occup Physiol ; 58(1-2): 100-4, 1988.
Artículo en Inglés | MEDLINE | ID: mdl-3203653

RESUMEN

The primary purpose of this investigation was to study the eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man using a recently developed combined isometric, concentric and eccentric controlled velocity dynamometer (the SPARK System). A secondary purpose was to compare the method error associated with maximal voluntary concentric and eccentric torque output over a range of testing velocities. 21 males (21-32 years) performed on two separate days maximal voluntary isometric, concentric and eccentric contractions of the quadriceps femoris at 4 isokinetic lever arm velocities of 0 degree.s-1 (isometric), 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1. Eccentric peak torque and angle-specific torques (measured every 10 degrees from 30 degrees to 70 degrees) did not significantly change from 0 degrees.s-1 to 270 degrees.s-1 (p greater than 0.005) with the exception of angle-specific 40 degrees torque, which significantly increased; p less than 0.05). The mean method error was significantly higher for the eccentric tests (10.6% +/- 1.6%) than for the concentric tests (8.1% +/- 1.7%) (p less than 0.05). The mean method error decreased slightly with increasing concentric velocity (p greater than 0.05), and increased slightly with increasing eccentric velocity (p greater than 0.05). A tension restricting neural mechanism, if active during maximal eccentric contractions, could possibly account for the large difference seen between the present eccentric torque-velocity results and the classic results obtained from isolated animal muscle.


Asunto(s)
Pierna , Músculos/fisiología , Adulto , Humanos , Masculino , Fisiología/métodos
13.
Int J Sports Med ; 13(7): 528-33, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1459748

RESUMEN

Seven male subjects performed 15 x 40m sprints, on three occasions, with rest periods of either 120 s (R120), 60 s (R60) or 30 s (R30) between each sprint. Sprint times were recorded with four photo cells placed at 0, 15, 30 and 40 m. The performance data indicated that whereas running speed over the last 10 m of each sprint decreased in all three protocols (after 11 sprints in R120, 7 sprints in R60 and 3 sprints in R30), performance during the initial acceleration period from 0-15 m was only affected with the shortest rest periods increasing from (mean +/- SEM) 2.58 +/- .03 (sprint 1) to 2.78 +/- .04 s (spring 15) (p < .05). Post-exercise blood lactate concentration was not significantly different in R120 (12.1 +/- 1.3 mmol.l-1) and R60 (13.9 +/- 1.2 mmol.l-1), but a higher concentration was found in R30 (17.2 +/- .7 mmol.l-1) (p < .05). After 6 sprints there was no significant difference in blood lactate concentration with the different recovery durations, however, there were significant differences in sprint times at this point, suggesting that blood lactate is a poor predictor of performance during this type of exercise. Although the work bouts could be classified primarily as anaerobic exercise, oxygen uptake measured during rest periods increased to 52, 57 and 66% of maximum oxygen uptake in R120, R60 and R30, respectively. Evidence of adenine nucleotide degradation was provided by plasma hypoxanthine and uric acid concentrations elevated post-exercise in all three protocols. Post-exercise uric acid concentration was not significantly affected by recovery duration.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Ejercicio Físico/fisiología , Nucleótidos de Adenina/metabolismo , Adulto , Frecuencia Cardíaca , Humanos , Hipoxantina , Hipoxantinas/sangre , Lactatos/sangre , Masculino , Consumo de Oxígeno , Descanso , Ácido Úrico/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA