Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Physiol Biochem ; 53(S1): 1-10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31804046

RESUMEN

BACKGROUND/AIMS: We have previously shown that inhibition of the mitochondrial Kv1.3 channel results in an initial mitochondrial hyperpolarization and a release of oxygen radicals that mediate mitochondrial depolarization, cytochrome c release and death. Here, we investigated whether inhibition of Kv1.3 channels can also induce cellular resistance mechanisms that counteract the induction of cell death under certain conditions. METHODS: We treated leukemic T cells with the mitochondria-targeted Kv1.3 inhibitor PCARBTP and determined the activity of different kinases associated with cell survival including ZAP70, PI-3-K, AKT, JNK and ERK by measuring the activation-associated phosphorylation of these proteins. Furthermore, we inhibited AKT and JNK and determined the effect of PCARBTP-induced tumor cell death. RESULTS: We demonstrate that treatment of Jurkat T leukemia cells with low doses of the mitochondria-targeted inhibitor of Kv1.3 PCARBTP (0.25 µM or 1 µM) for 10 minutes induced a constitutive phosphorylation/activation of the pro-survival signaling molecules ZAP70, PI-3-K, AKT and JNK, while the phosphorylation/activation of ERK was not affected. Stimulation of Jurkat cells via the TCR/CD3 complex induced an additional activation of a similar pattern of signaling events. Higher doses of the Kv1.3 inhibitor, i.e. 10 µM PCARBTP, reduced the basal phosphorylation/activation of these signaling molecules and also impaired their activation upon stimulation via the TCR/CD3 complex. A low dose of PCARBTP, i.e. 0.25 µM PCARBTP, was almost without any effect on cell death. In contrast, concomitant inhibition of PI-3-K or AKT greatly sensitized Jurkat leukemia cells to the Kv1.3 inhibitor PCARBTP and allowed induction of cell death already at 0.25 µM PCARBTP. CONCLUSION: These studies indicate that Jurkat leukemia cells respond to low doses of the mitochondria-targeted Kv1.3 inhibitor PCARBTP with an activation of survival signals counteracting cell death. Inhibition of these T cell survival signals sensitizes leukemia cells to death induced by mitochondria-targeted Kv1.3 inhibitors. High doses of the Kv1.3 inhibitor inactivate these signals directly permitting death.


Asunto(s)
Apoptosis/efectos de los fármacos , Cumarinas/farmacología , Compuestos Organofosforados/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Jurkat , Leucemia/metabolismo , Leucemia/patología , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/antagonistas & inhibidores , Proteína Tirosina Quinasa ZAP-70/metabolismo
2.
Cell Physiol Biochem ; 53(6): 1015-1028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31854953

RESUMEN

BACKGROUND/AIMS: Pulmonary infections with Pseudomonas aeruginosa (P. aeruginosa) or Staphylococcus aureus (S. aureus) are of utmost clinical relevance in patients with cystic fibrosis, chronic obstructive pulmonary disease, after trauma and burn, upon ventilation or in immuno-compromised patients. Many P. aeruginosa and S. aureus strains are resistant to many known antibiotics and it is very difficult or often impossible to eradicate the pathogens in patient´s lungs. We have recently shown that the sphingoid base sphingosine very efficiently kills many pathogens, including for instance P. aeruginosa, S. aureus or Acinetobacter baumannii, in vitro. In vivo experiments of our group on cystic fibrosis mice indicated that inhalation of sphingosine prevents or eliminates existing acute or chronic pneumonia with P. aeruginosa or S. aureus in these mice. We also demonstrated that sphingosine is safe to use for inhalation up to high doses, at least in mice. To facilitate development of sphingosine to an anti-bactericidal drug that can be used in humans for inhalation, safety data on non-rodents, larger animals are absolutely required. METHODS: Here, we inhaled mini pigs with increasing doses of sphingosine for 10 days and analyzed the uptake of sphingosine into epithelial cells of bronchi as well as into the trachea and lung and the systemic circulation. Moreover, we measured the generation of ceramide and sphingosine 1-phosphate that potentially mediate inflammation, the influx of leukocytes, epithelial cell death and disruption of the epithelial cell barrier. RESULTS: We demonstrate that inhalation of sphingosine results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea, but not in systemic accumulation. Inhaled sphingosine had no side effects up to very high doses. CONCLUSION: In summary, we demonstrate that inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no systemic or local side effects.


Asunto(s)
Antibacterianos/metabolismo , Esfingosina/metabolismo , Administración por Inhalación , Animales , Antibacterianos/farmacología , Bronquios/metabolismo , Bronquios/patología , Ceramidas/análisis , Humanos , Pulmón/patología , Lisofosfolípidos/análisis , Espectrometría de Masas , Pseudomonas aeruginosa/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/análisis , Esfingosina/farmacología , Staphylococcus aureus/efectos de los fármacos , Porcinos , Porcinos Enanos , Tráquea/metabolismo , Tráquea/patología
3.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084896

RESUMEN

Staphylococcus aureus (S. aureus) infections are among the most common and severe infections, garnering notoriety in an era of increasing resistance to antibiotics. It is therefore important to define molecular mechanisms by which this pathogen attacks host cells. Here, we demonstrate that alpha-toxin, one of the major toxins of S. aureus, induces activation of acid sphingomyelinase and concomitant release of ceramide in endothelial cells treated with the toxin. Activation of acid sphingomyelinase by alpha-toxin is mediated via ADAM10. Infection experiments employing alpha-toxin-deficient S. aureus and the corresponding wild-type strain reveal that activation of acid sphingomyelinase in endothelial cells requires alpha-toxin expression by the pathogen. Activation of acid sphingomyelinase is linked to degradation of tight junctions in endothelial cells in vitro, which is blocked by pharmacological inhibition of acid sphingomyelinase. Most importantly, alpha-toxin induces severe degradation of tight junctions in the lung and causes lung edema in vivo, which is prevented by genetic deficiency of acid sphingomyelinase. These data indicate a novel and important role of the acid sphingomyelinase/ceramide system for the endothelial response to toxins and provide a molecular link between alpha-toxin and the degradation of tight junctions. The data also suggest that inhibition of acid sphingomyelinase may provide a novel treatment option to prevent lung edema caused by S. aureus alpha-toxin.


Asunto(s)
Toxinas Bacterianas/metabolismo , Ceramidas/metabolismo , Células Endoteliales/metabolismo , Proteínas Hemolisinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Staphylococcus aureus/metabolismo , Uniones Estrechas/metabolismo , Proteína ADAM10/metabolismo , Animales , Células Cultivadas , Células Endoteliales/virología , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Edema Pulmonar/metabolismo , Edema Pulmonar/virología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/virología , Uniones Estrechas/virología
4.
Biol Chem ; 399(10): 1203-1213, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29613852

RESUMEN

Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.


Asunto(s)
Toxinas Bacterianas/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Proteínas Hemolisinas/metabolismo , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animales , Fibrosis Quística/microbiología , Femenino , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología
5.
Cell Physiol Biochem ; 41(3): 1208-1218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28427052

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is the most common autosomal-recessive disorder in western countries. Previous studies have demonstrated an important role of sphingolipids in the pathophysiology of cystic fibrosis. It has been shown that ceramide has a central role in various pulmonary infections, including those with Pseudomonas aeruginosa (P. aeruginosa). Ceramide is accumulated in the airways of CF mice and patients. However, little is known about a potential role of glucosylceramide in cystic fibrosis. METHODS: We investigated the expression of glucosylceramide and lactosylceramide in the respiratory tract of murine and human CF samples by immunohistochemistry and analyzed effects of glucosylceramide on P. aeruginosa in vitro. We performed pulmonary infections with P. aeruginosa and tested inhalation with glucosylceramide. RESULTS: We demonstrate that glucosylceramide is down-regulated on the apical surface of bronchial and tracheal epithelial cells in cystic fibrosis mice. Although glucosylceramide did not have a direct bactericidal effect on Pseudomonas aeruginosa in vitro, inhalation of CF mice with glucosylceramide protected these mice from infection with P. aeruginosa, while non-inhaled CF mice developed severe pneumonia. CONCLUSION: Our data suggest that glucosylceramide acts in vivo in concert with ceramide and sphingosine to determine the pulmonary defense against P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Antígenos CD/farmacología , Fibrosis Quística/inmunología , Glucosilceramidas/farmacología , Lactosilceramidos/farmacología , Infecciones por Pseudomonas/prevención & control , Administración por Inhalación , Animales , Antibacterianos/biosíntesis , Antígenos CD/biosíntesis , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Glucosilceramidas/biosíntesis , Humanos , Lactosilceramidos/biosíntesis , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Transgénicos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo
6.
Cell Physiol Biochem ; 38(6): 2094-102, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27184795

RESUMEN

BACKGROUND: Pulmonary Staphylococcus aureus (S. aureus) infections occur early in a high percentage of cystic fibrosis (CF) patients and it is believed that these infections facilitate further colonization of CF lungs with Pseudomonas aeruginosa (P. aeruginosa). Previous studies demonstrated a marked reduction of sphingosine in tracheal and bronchial epithelial cells in CF compared to wild type mice, while ceramide is massively increased in CF mice. METHODS: We investigated the effect of C18-sphingosine and C16-ceramide on S. aureus in vitro. Based on our results we performed pulmonary infections with S. aureus and tested the influence of sphingosine inhalation. RESULTS: In vitro incubation of S. aureus with C18-sphingosine rapidly killed S. aureus, while C16-ceramide did not affect bacterial survival, but abrogated the effect of C18-sphingosine when applied together. The in vivo infection experiments revealed a high susceptibility of CF mice to pulmonary infection with S. aureus. Inhalation of C18-sphingosine rescued CF mice from pulmonary infections with different clinical S. aureus isolates, including a methicillin-resistant S. aureus (MRSA) strain. CONCLUSIONS: Our data indicate that the imbalance between ceramide and sphingosine in the CF respiratory tract prevents killing of S. aureus and causes the high susceptibility of CF mice to pulmonary S. aureus infections.


Asunto(s)
Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Neumonía Estafilocócica/complicaciones , Neumonía Estafilocócica/tratamiento farmacológico , Esfingosina/uso terapéutico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Ceramidas/metabolismo , Ceramidas/farmacología , Ceramidas/uso terapéutico , Fibrosis Quística/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Neumonía Estafilocócica/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacología
7.
Viruses ; 16(4)2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675888

RESUMEN

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Asunto(s)
Antivirales , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicación Viral , SARS-CoV-2/efectos de los fármacos , Sertralina/farmacología , Fluoxetina/farmacología , Replicación Viral/efectos de los fármacos , Humanos , Antivirales/farmacología , Chlorocebus aethiops , Células Vero , COVID-19/virología , Animales , Tratamiento Farmacológico de COVID-19
8.
PLoS One ; 17(7): e0271620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862397

RESUMEN

BACKGROUND: Ex-vivo lung perfusion (EVLP) is a save way to verify performance of donor lungs prior to implantation. A major problem of lung transplantation is a donor-to-recipient-transmission of bacterial cultures. Thus, a broadspectrum anti-infective treatment with sphingosine in EVLP might be a novel way to prevent such infections. Sphingosine inhalation might provide a reliable anti-infective treatment option in EVLP. Here, antimicrobial potency of inhalative sphingosine in an infection EVLP model was tested. METHODS: A 3-hour EVLP run using pig lungs was performed. Bacterial infection was initiated 1-hour before sphingosine inhalation. Biopsies were obtained 60 and 120 min after infection with Pseudomonas aeruginosa. Aliquots of broncho-alveolar lavage (BAL) before and after inhalation of sphingosine were plated and counted, tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Immunostainings were performed. RESULTS: Sphingosine inhalation in the setting of EVLP rapidly resulted in a 6-fold decrease of P. aeruginosa CFU in the lung (p = 0.016). We did not observe any negative side effects of sphingosine. CONCLUSION: Inhalation of sphingosine induced a significant decrease of Pseudomonas aeruginosa at the epithelial layer of tracheal and bronchial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated pig lungs.


Asunto(s)
Antiinfecciosos , Trasplante de Pulmón , Animales , Antiinfecciosos/farmacología , Pulmón , Trasplante de Pulmón/métodos , Perfusión/métodos , Pseudomonas aeruginosa , Esfingosina/farmacología , Porcinos
9.
Front Microbiol ; 12: 694489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394034

RESUMEN

Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.

10.
Sci Rep ; 11(1): 18607, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545108

RESUMEN

Ex-vivo lung perfusion (EVLP) systems like XVIVO are more and more common in the setting of lung transplantation, since marginal donor-lungs can easily be subjected to a performance test or be treated with corticosteroids or antibiotics in high dose regimes. Donor lungs are frequently positive in bronchoalveolar lavage (BAL) bacterial cultures (46-89%) which leads to a donor-to-recipient transmission and after a higher risk of lung infection with reduced posttransplant outcome. We have previously shown that sphingosine very efficiently kills a variety of pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and epidermidis, Escherichia coli or Haemophilus influenzae. Thus, sphingosine could be a new treatment option with broadspectrum antiinfective potential, which may improve outcome after lung transplantation when administered prior to lung re-implantation. Here, we tested whether sphingosine has any adverse effects in the respiratory tract when applied into isolated ventilated and perfused lungs. A 4-h EVLP run using minipig lungs was performed. Functional parameters as well as perfusate measurements where obtained. Biopsies were obtained 30 min and 150 min after inhalation of sphingosine. Tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Hemalaun, TUNEL as well as stainings with Cy3-coupled anti-sphingosine or anti-ceramide antibodies were implemented. We demonstrate that tube-inhalation of sphingosine into ex-vivo perfused and ventilated minipig lungs results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea without morphological side effects up to very high doses of sphingosine. Sphingosine also did not affect functional lung performance. In summary, the inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated minipig lungs.


Asunto(s)
Antibacterianos/administración & dosificación , Trasplante de Pulmón/métodos , Pulmón/efectos de los fármacos , Esfingosina/administración & dosificación , Administración por Inhalación , Animales , Perfusión/métodos , Porcinos
11.
J Mol Med (Berl) ; 98(2): 209-219, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31863153

RESUMEN

Periprosthetic infection (PPI) is a devastating complication in joint replacement surgery. On the background of an aging population, the number of joint replacements and associated complications is expected to increase. The capability for biofilm formation and the increasing resistance of different microbes to antibiotics have complicated the treatment of PPI, requiring the need for the development of alternative treatment options. The bactericidal effect of the naturally occurring amino alcohol sphingosine has already been reported. In our study, we demonstrate the antimicrobial efficacy of sphingosine on three different strains of biofilm producing Staphylococcus epidermidis, representing one of the most frequent microbes involved in PPI. In an in vitro analysis, sphingosine's capability for prevention and treatment of biofilm-contamination on different common orthopedic implant surfaces was tested. Coating titanium implant samples with sphingosine not only prevented implant contamination but also revealed a significant reduction of biofilm formation on the implant surfaces by 99.942%. When testing the antimicrobial efficacy of sphingosine on sessile biofilm-grown Staphylococcus epidermidis, sphingosine solution was capable to eliminate 99.999% of the bacteria on the different implant surfaces, i.e., titanium, steel, and polymethylmethacrylate. This study provides evidence on the antimicrobial efficacy of sphingosine for both planktonic and sessile biofilm-grown Staphylococcus epidermidis on contaminated orthopedic implants. Sphingosine may provide an effective and cheap treatment option for prevention and reduction of infections in joint replacement surgery. KEY MESSAGES: • Here we established a novel technology for prevention of implant colonization by sphingosine-coating of orthopedic implant materials. • Sphingosine-coating of orthopedic implants prevented bacterial colonization and significantly reduced biofilm formation on implant surfaces by 99.942%. • Moreover, sphingosine solution was capable to eliminate 99.999% of sessile biofilm-grown Staphylococcus epidermidis on different orthopedic implant surfaces.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Prótesis e Implantes/microbiología , Esfingosina/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Ácidos Polimetacrílicos , Staphylococcus epidermidis/fisiología , Acero , Titanio
12.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33163980

RESUMEN

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Amitriptilina/farmacología , Animales , Antidepresivos/farmacología , Ceramidas/antagonistas & inhibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Ceramidasa Neutra/farmacología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA