RESUMEN
Proteins of unknown function belonging to cog1816 and cog0402 were characterized. Sav2595 from Steptomyces avermitilis MA-4680, Acel0264 from Acidothermus cellulolyticus 11B, Nis0429 from Nitratiruptor sp. SB155-2 and Dr0824 from Deinococcus radiodurans R1 were cloned, purified, and their substrate profiles determined. These enzymes were previously incorrectly annotated as adenosine deaminases or chlorohydrolases. It was shown here that these enzymes actually deaminate 6-aminodeoxyfutalosine. The deamination of 6-aminodeoxyfutalosine is part of an alternative menaquinone biosynthetic pathway that involves the formation of futalosine. 6-Aminodeoxyfutalosine is deaminated by these enzymes with catalytic efficiencies greater than 10(5) M(-1) s(-1), Km values of 0.9-6.0 µM, and kcat values of 1.2-8.6 s(-1). Adenosine, 2'-deoxyadenosine, thiomethyladenosine, and S-adenosylhomocysteine are deaminated at least an order of magnitude slower than 6-aminodeoxyfutalosine. The crystal structure of Nis0429 was determined and the substrate, 6-aminodeoxyfutalosine, was positioned in the active site on the basis of the presence of adventitiously bound benzoic acid. In this model, Ser-145 interacts with the carboxylate moiety of the substrate. The structure of Dr0824 was also determined, but a collapsed active site pocket prevented docking of substrates. A computational model of Sav2595 was built on the basis of the crystal structure of adenosine deaminase and substrates were docked. The model predicted a conserved arginine after ß-strand 1 to be partially responsible for the substrate specificity of Sav2595.
Asunto(s)
Nucleósido Desaminasas/metabolismo , Nucleósidos de Purina/metabolismo , Vitamina K 2/metabolismo , Actinomycetales/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Desaminación , Deinococcus/enzimología , Epsilonproteobacteria/enzimología , Epsilonproteobacteria/genética , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Nucleósido Desaminasas/genética , Streptomyces/enzimología , Streptomyces/genética , Especificidad por SustratoRESUMEN
The effect of novel surfactants on the aqueous solubility and the permeability of paclitaxel across a Caco-2 cell monolayer were examined in this work. The solubility and permeability of paclitaxel was evaluated in the presence of four soft surfactants (SS) KXN441, KXN424, KXN437, and KXN 337 and Solutol HS15. All surfactants increased the aqueous solubility of paclitaxel. Caco-2 cell membrane integrity in the presence of SS and Solutol HS15 was assessed by mannitol permeability and LDH release. All surfactants were tested at 0.5x CMC, 5x CMC and 1.5 mM concentrations. The effect of SSs on paclitaxel permeability was concentration dependent. At all concentrations tested, KXN 441 and Solutol HS 15 showed partially inhibition of drug efflux with no discernable change in mannitol permeability or cytotoxicity as observed with LDH release. At these concentrations, other SSs exhibited some partial efflux inhibition along with compromised membrane integrity and increasing mannitol permeability. In conclusion, all SSs were able to increase the aqueous solubility and permeability of paclitaxel across Caco-2 cells monolayer. However, KXN441 and Solutol HS15 were able to enhance paclitaxel permeability across Caco-2 monolayer without cytotoxicity.