RESUMEN
Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.
Asunto(s)
Antiinfecciosos , Floroglucinol , Humanos , Floroglucinol/farmacología , Floroglucinol/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
Morinda citrifolia L., commonly known as Noni, has a longstanding history in traditional medicine for treating various diseases. Recently, there has been an increased focus on exploring Noni extracts and phytoconstituents, particularly for their effectiveness against cancers such as lung, esophageal, liver, and breast cancer, and their potential in cancer chemoprevention. This study aims to provide a comprehensive review of in vitro and in vivo studies assessing Noni's impact on cancer, alongside an exploration of its bioactive compounds. A systematic review was conducted, encompassing a wide range of scientific databases to gather pertinent literature. This review focused on in vitro and in vivo studies, as well as clinical trials that explore the effects of Noni fruit and its phytoconstituents-including anthraquinones, flavonoids, sugar derivatives, and neolignans-on cancer. The search was meticulously structured around specific keywords and criteria to ensure a thorough analysis. The compiled studies highlight Noni's multifaceted role in cancer therapy, showcasing its various bioactive components and their modes of action. This includes mechanisms such as apoptosis induction, cell cycle arrest, antiangiogenesis, and immune system modulation, demonstrating significant anticancer and chemopreventive potential. The findings reinforce Noni's potential as a safe and effective option in cancer prevention and treatment. This review underscores the need for further research into Noni's anticancer properties, with the hope of stimulating additional studies and clinical trials to validate and expand upon these promising findings.
Asunto(s)
Antineoplásicos Fitogénicos , Morinda , Extractos Vegetales , Morinda/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Frutas/química , Flavonoides/farmacología , Flavonoides/química , Fitoquímicos/farmacologíaRESUMEN
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Fenoles/farmacología , Fenoles/uso terapéuticoRESUMEN
The Kelch-like ECH associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway is considered a master regulator of the cellular response against oxidative stress. Numerous studies have investigated the role of Keap1/Nrf2/ARE in the different stages of cancer development. A comprehensive literature search using the Google Scholar, PubMed and Science Direct databases was performed to retrieve information related to the cancer protective role of 21 selected dietary polyphenols via modulation of Keap1/Nrf2/ARE and interconnected signaling pathways/proteins (MAPK/ERK1/2, PI3K/Akt, PKD, JNKs, AMPK, NF-κB). Information on the anti-inflammatory and cytoprotective effects caused by the selected dietary polyphenols following Keap1/Nrf2/ARE modulation was also collected. The majority of the studies analyzed in this review demonstrated the cancer protective role of the selected polyphenols mostly in-vitro. Limited work was performed in-vivo and only one of the selected polyphenols was subjected to a clinical trial. It is hoped that this review will encourage further in-vivo studies to confirm the cancer protective role of methyleugenol, carnosol, and catechin, as well as further clinical trials to unambiguously establish whether the consumption of dietary polyphenols impacts on the incidence and progression of cancers in humans.
Asunto(s)
Elementos de Respuesta Antioxidante , Neoplasias , Humanos , Factor 2 Relacionado con NF-E2/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Estrés Oxidativo/fisiología , Neoplasias/prevención & control , Polifenoles/farmacologíaRESUMEN
Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae) is a plant indigenous to Africa and South-East Asia. It is widely used in ethnomedicine to alleviate various diseases including hypertension, diabetes, rheumatism, jaundice, inflammation, fever, fractures, scabies, and urinary disorders. A total of 167 phytoconstituents, belonging to 12 different chemical categories, including alkaloids, flavonoids, terpenoids, and phenolic compounds have thus far been isolated from various parts of T. crispa. Numerous in vitro and in vivo investigations have already established the antidiabetic, anticancer, antiparasitic, antimicrobial, immunomodulatory, hepatoprotective, analgesic, antipyretic, antihyperuricemic, and pesticidal activity of this plant, as well as its effects on the cardiac and the central nervous system. Most pharmacological investigations to date have been carried out on plant extracts and fractions. The exact identity of the phytoconstituents responsible for the observed biological effects and their mode of action at the molecular level are yet to be ascertained. Toxicological studies have demonstrated that T. crispa is relatively safe, although dose-dependent hepatotoxicity is a concern at high doses. This review presents a comprehensive update and analysis on studies related to the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of T. crispa. It provides some critical insights into the current scientific knowledge on this plant and its future potential in pharmaceutical research.
RESUMEN
The genus Allium comprises of at least 918 species; the majority grown for dietary and medicinal purposes. This review describes the traditional uses, phytoconstituents, anti-inflammatory and anticancer activity, and safety profile of six main species, namely Allium sativum L. (garlic), Allium cepa L. (onions), Allium ampeloprasum L. (leek), Allium fistulosum L. (scallion), Allium schoenoprasum L. (chives) and Allium tuberosum Rottler (garlic chives). These species contain at least 260 phytoconstituents; mainly volatile compounds-including 63 organosulfur molecules-, saponins, flavonoids, anthocyanins, phenolic compounds, amino acids, organic acids, fatty acids, steroids, vitamins and nucleosides. They have prominent in vitro anti-inflammatory activity, and in vivo replications of such results have been achieved for all except for A. schoenoprasum. They also exert cytotoxicity against different cancer cell lines. Several anticancer phytoconstituents have been characterized from all except for A. fistulosum. Organosulfur constituents, saponins and flavonoid glycosides have demonstrated anti-inflammatory and anticancer activity. Extensive work has been conducted mainly on the anti-inflammatory and anticancer activity of A. sativum and A. cepa. The presence of anti-inflammatory and anticancer constituents in these two species suggests that similar bioactive constituents could be found in other species. This provides future avenues for identifying new Allium-derived anti-inflammatory and anticancer agents.
Asunto(s)
Ajo , Neoplasias , Humanos , Verduras , Antocianinas/metabolismo , Cebollas/química , Ajo/química , Neoplasias/tratamiento farmacológico , Antioxidantes/análisis , Inflamación/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/metabolismoRESUMEN
The endoplasmic reticulum (ER) is the place where proteins and lipids are biosynthesized and where transmembrane proteins are folded. Both pathological and physiological situations may disturb the function of the ER, resulting in ER stress. Under stress conditions, the cells initiate a defensive procedure known as the unfolded protein response (UPR). Cases of severe stress lead to autophagy and/or the induction of cell apoptosis. Many studies implicate ER stress as a major factor contributing to many diseases. Therefore, the modulation of ER stress pathways has become an attractive therapeutic target. Quercetin is a plant-derived metabolite belonging to the flavonoids class which presents a range of beneficial effects including anti-inflammatory, cardioprotective, anti-oxidant, anti-obesity, anti-carcinogenic, anti-atherosclerotic, anti-diabetic, anti-hypercholesterolemic, and anti-apoptotic activities. Quercetin also has anti-cancer activity, and can be used as an adjuvant to decrease resistance to cancer chemotherapy. Furthermore, the effect of quercetin can be increased with the help of nanotechnology. This review discusses the role of quercetin in the modulation of ER stress (and related diseases) and provides novel evidence for the beneficial use of quercetin in therapy.
Asunto(s)
Estrés del Retículo Endoplásmico , Quercetina , Apoptosis , Retículo Endoplásmico/metabolismo , Quercetina/farmacología , Respuesta de Proteína DesplegadaRESUMEN
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Asunto(s)
Diabetes Mellitus , Plantas Medicinales , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Plantas Medicinales/químicaRESUMEN
Renal cell carcinoma is the most lethal cancer of the urological system due to late diagnosis and treatment resistance. Propolis, a beehive product, is a valuable natural source of compounds with bioactivities and may be a beneficial addition to current anticancer treatments. A Portuguese propolis sample, its fractions (n-hexane, ethyl acetate, n-butanol and water) and three subfractions (P1-P3), were tested for their toxicity on A498, 786-O and Caki-2 renal cell carcinoma cell lines and the non-neoplastic HK2 kidney cells. The ethyl acetate fraction showed the strongest toxicity against A498 (IC50 = 0.162 µg mL-1) and 786-O (IC50 = 0.271 µg mL-1) cells. With similar toxicity against 786-O, P1 (IC50 = 3.8 µg mL-1) and P3 (IC50 = 3.1 µg mL-1) exhibited greater effect when combined (IC50 = 2.5 µg mL-1). Results support the potential of propolis and its constituents as promising coadjuvants in renal cell carcinoma treatment.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Própolis , Acetatos , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Riñón , Neoplasias Renales/tratamiento farmacológico , Extractos Vegetales , Portugal , Própolis/farmacologíaRESUMEN
The antidepressant activity of Spathodea campanulata flowers was evaluated in mice and in silico. When tested at doses of 200 and 400 mg/kg, the methanol extract of S. campanulata (MESC) showed dose-dependent antidepressant activity in the force swim test (FST), tail suspension test (TST), lithium chloride-induced twitches test and the open field test. In FST and TST, animals treated with MESC demonstrated a significant decrease in the immobility period compared to the control group. The lithium chloride-induced head twitches were significantly reduced following administration of MESC. The latter, at the dose of 400 mg/kg, also significantly reduced locomotor activity. Following administration of MESC, changes in the levels of serum corticosterone, and of norepinephrine, dopamine, serotonin, 4-hydroxy-3-methoxyphenylglycol (MHPG), 4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in different brain regions using HPLC. The presence of spatheoside A (m/z 541) and spatheoside B (m/z 559) in MESC was detected using HPLC/ESI-MS. These two iridoids demonstrated a high predictive binding affinity for the active site of the type A monoamine oxidase (MAO-A) enzyme with scores of 99.40 and 93.54, respectively. These data suggest that S. campanulata flowers warrants further investigation as a source of novel templates for antidepressive drugs.
Asunto(s)
Antidepresivos/metabolismo , Bignoniaceae/química , Flores/química , Iridoides/metabolismo , Monoaminooxidasa/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Antidepresivos/química , Antidepresivos/farmacología , Unión Competitiva , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresión/prevención & control , Ácido Hidroxiindolacético/metabolismo , Iridoides/farmacología , Masculino , Metanol/química , Ratones , Actividad Motora/efectos de los fármacos , Fitoterapia/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
When tested in the acetic acid-induced writhing and formalin-induced paw-licking tests, the ethanol extract of Vernonia patula (VP) aerial parts showed significant antinociceptive activity. In neuropharmacological tests, it also significantly delayed the onset of sleep, increased the duration of sleeping time, and significantly reduced the locomotor activity and exploratory behaviour of mice. Five phenolic compounds, namely gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol, were detected in VP following HPLC-DAD analysis. The presence of these phenolic compounds in VP provides some support for the observed antinociceptive and sedative effects. A computational study was performed to predict the binding affinity of gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol towards the cannabinoid type 1 (CB1) receptor. Caffeic and vanillic acid showed the highest probable ligand efficiency indices towards the CB1 target. Vanillic acid displayed the best blood-brain barrier penetration prediction score. These findings provide some evidence for the traditional use of VP to treat pain.
Asunto(s)
Analgésicos/uso terapéutico , Cannabinoides/uso terapéutico , Hipnóticos y Sedantes/uso terapéutico , Fenoles/uso terapéutico , Extractos Vegetales/química , Vernonia/química , Analgésicos/farmacología , Animales , Cannabinoides/farmacología , Hipnóticos y Sedantes/farmacología , Masculino , Ratones , Fenoles/farmacologíaRESUMEN
A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, ß-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood-brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.
Asunto(s)
Receptores de Cannabinoides/química , Vernonia/química , Vernonia/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Triterpenos Pentacíclicos/química , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/fisiología , Triterpenos/químicaRESUMEN
Pharmacological studies were performed in mice on the methanol extract of Tinospora crispa (TC), and of its hexane (HF) and chloroform (CF) fractions. Significant antinociceptive activity was observed for TC, HF, and CF in the acetic acid-induced writhing and formalin-induced paw licking tests. Anxiolytic and antidepressant activities were assessed using the open field, hole board, and elevated plus maze (EPM) tests. TC, HF, and CF demonstrated a significant decrease in spontaneous locomotor activity. They also showed an increase in the number of head-dippings in the hole-board test, suggesting decreased fearfulness. TC, and most of its fractions, showed a significant increase of the time spent in the opened arm of the EPM, indicating reduced anxiety. This study provides some support to explain the traditional use of T. crispa as a remedy for pain.
Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Extractos Vegetales/química , Tinospora/química , Animales , Ansiolíticos/farmacología , Antidepresivos/farmacología , Femenino , Humanos , Masculino , RatonesRESUMEN
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
RESUMEN
Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-ß-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-ß-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3',5'-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand-protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3',5'-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.
Asunto(s)
Acné Vulgar , Benzofenonas , Garcinia mangostana , Simulación del Acoplamiento Molecular , Xantonas , Xantonas/química , Xantonas/farmacología , Benzofenonas/química , Benzofenonas/farmacología , Garcinia mangostana/química , Humanos , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Simulación de Dinámica Molecular , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/química , Simulación por Computador , Enlace de HidrógenoRESUMEN
Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related mortality worldwide. The efficacy of chemotherapy agents in CRC treatment is often limited due to toxic side effects, heterogeneity of cancer cells, and the possibility of chemoresistance which promotes cancer cell survival through several mechanisms. Combining chemotherapy agents with natural compounds like curcumin, a polyphenol compound from the Curcuma longa plant, has been reported to overcome chemoresistance and increase the sensitivity of cancer cells to chemotherapeutics. Curcumin, alone or in combination with chemotherapy agents, has been demonstrated to prevent chemoresistance by modulating various signaling pathways, reducing the expression of drug resistance-related genes. The purpose of this article is to provide a comprehensive update on studies that have investigated the ability of curcumin to enhance the efficacy of chemotherapy agents used in CRC. It is hoped that it can serve as a template for future research on the efficacy of curcumin, or other natural compounds, combined with chemotherapy agents to maximize the effectiveness of therapy and reduce the side effects that occur in CRC or other cancers.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.
Asunto(s)
Antihelmínticos , Haemonchus , Helmintiasis , Limoninas , Plantas Medicinales , Adulto , Animales , Humanos , Plantas Medicinales/química , Tubulina (Proteína) , Antihelmínticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , ColchicinaRESUMEN
OBJECTIVES: Fraxinus excelsior L. (FE) is traditionally used to treat inflammatory and pain disorders. This study aimed to identify the constituents of FE leaves and evaluate the effects of its n-hexane (FEH), ethyl acetate (FEE), methanol (FEM) extracts and constituents on the viability of THP-1 cells and their ability to release pro-inflammatory cytokines. METHODS: THP-1 cell viability was assessed using an MTT assay. The immunomodulatory activity was evaluated by measuring tumour necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) released by lipopolysaccharide-stimulated THP-1 cells using enzyme-linked immunosorbent assays. KEY FINDINGS: Triterpenes, tyrosol esters, alkanes, phytyl and steryl esters, pinocembrin and bis(2-ethylhexyl)phthalate were isolated from FE. The tyrosol esters showed no significant effect on THP-1 cell viability. FEH, FEE, FEM, and pinocembrin, ursolic acid, oleanolic acid had IC50 values of 56.9, 39.9, 124.7 µg/ml and 178.6, 61.5 and 199.8 µM, respectively. FE extracts, ursolic acid, oleanolic acid and pinocembrin significantly reduced TNF-α/IL-12 levels. The tyrosol esters did not significantly affect TNF-α/IL-12 production. CONCLUSIONS: FE was able to reduce pro-inflammatory cytokine production indicating a mechanistic focus in its use for inflammation and pain. Further investigations are warranted to unravel the mode of action of the tested constituents and discover other potentially active compounds in FE extracts.
Asunto(s)
Fraxinus , Ácido Oleanólico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fraxinus/química , Factor de Necrosis Tumoral alfa , Ácido Oleanólico/farmacología , Interleucina-12 , Fitoquímicos/farmacología , Lipopolisacáridos/farmacología , Ácido UrsólicoRESUMEN
The diarylheptanoid curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] is one of the phenolic pigments responsible for the yellow colour of turmeric (Curcuma longa L.). This phytochemical has gained much attention in recent years due to its therapeutic potential in cancer. A range of drug delivery approaches have been developed to optimise the pharmacokinetic profile of curcumin and ensure that it reaches its target sites. Curcumin exhibits numerous biological effects, including anti-inflammatory, cardioprotective, antidiabetic, and anti-aging activities. It has also been extensively studied for its role as a cancer chemopreventive and anticancer agent. This review focusses on the role of curcumin in targeting the cell signalling pathways involved in cancer, particularly via modulation of growth factors, transcription factors, kinases and other enzymes, pro-inflammatory cytokines, and pro-apoptotic and anti-apoptotic proteins. It is hoped that this study will help future work on the potential of curcumin to fight cancer.
RESUMEN
Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC50=0.23 µg/ml) and MDA-MB-431 (IC50=0.5 µg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against Staphylococcus aureus (MIC of 0.2 µg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.