Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511294

RESUMEN

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Asunto(s)
Briófitas , Líquenes , Ecosistema , Cambio Climático , Plantas , Briófitas/fisiología , Líquenes/fisiología
2.
J Anim Ecol ; 89(2): 299-308, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31562768

RESUMEN

Diversity of producers (e.g. plants) usually increases the diversity of associated organisms, but the scale (i.e. the spatial area of plant diversity considered) at which plant diversity acts on other taxa has rarely been studied. Most evidence for cross-taxon diversity relations come from above-ground consumers that directly interact with plants. Experimental tests of plant diversity effects on elusive organisms inhabiting the leaf litter layer, which are important for nutrient cycling and decomposition, are rare. Using a large tree diversity experiment, we tested whether tree diversity at the larger plot (i.e. community) or the smaller neighbourhood scale relates to the abundance, species richness, functional and phylogenetic diversity of leaf litter ants, which are dominant organisms in brown food webs. Contrary to our expectations of scale-independent positive tree diversity effects, ant diversity increased only with plot but not neighbourhood tree diversity. While the exact causal mechanisms are unclear, nest relocation or small-scale competition among ants may explain the stronger tree diversity effects at the plot scale. Our results indicate that even for small and less mobile organisms in the leaf litter, effects of tree diversity are stronger at relatively larger scales. The finding emphasizes the importance of diverse forest stands, in which mixing of tree species is not restricted to small patches, for supporting arthropod diversity in the leaf litter.


Asunto(s)
Hormigas/genética , Animales , Biodiversidad , Ecosistema , Bosques , Filogenia
3.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302436

RESUMEN

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Asunto(s)
Ecosistema , Árboles , Árboles/química , Hojas de la Planta , Bosques , , Biodiversidad , Suelo/química
4.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417179

RESUMEN

Ecosystems provide multiple services to humans. However, agricultural systems are usually evaluated on their productivity and economic performance, and a systematic and quantitative assessment of the multifunctionality of agroecosystems including environmental services is missing. Using a long-term farming system experiment, we evaluated and compared the agronomic, economic, and ecological performance of the most widespread arable cropping systems in Europe: organic, conservation, and conventional agriculture. We analyzed 43 agroecosystem properties and determined overall agroecosystem multifunctionality. We show that organic and conservation agriculture promoted ecosystem multifunctionality, especially by enhancing regulating and supporting services, including biodiversity preservation, soil and water quality, and climate mitigation. In contrast, conventional cropping showed reduced multifunctionality but delivered highest yield. Organic production resulted in higher economic performance, thanks to higher product prices and additional support payments. Our results demonstrate that different cropping systems provide opposing services, enforcing the productivity-environmental protection dilemma for agroecosystem functioning.

5.
PLoS One ; 14(8): e0220881, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430307

RESUMEN

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this respect, 3D modelling of soil organic carbon (SOC) offers substantial improvements in the understanding and assessment of the spatial distribution of SOC stocks. Previous three-dimensional SOC modelling approaches usually averaged each depth increment for multi-layer two-dimensional predictions. Therefore, these models are limited in their vertical resolution and thus in the interpretability of the soil as a volume as well as in the accuracy of the SOC stock predictions. So far, only few approaches used spatially modelled depth functions for SOC predictions. This study implemented and evaluated an approach that compared polynomial, logarithmic and exponential depth functions using non-linear machine learning techniques, i.e. multivariate adaptive regression splines, random forests and support vector machines to quantify SOC stocks spatially and depth-related in the context of biodiversity and ecosystem functioning research. The legacy datasets used for modelling include profile data for SOC and bulk density (BD), sampled at five depth increments (0-5, 5-10, 10-20, 20-30, 30-50 cm). The samples were taken in an experimental forest in the Chinese subtropics as part of the biodiversity and ecosystem functioning (BEF) China experiment. Here we compared the depth functions by means of the results of the different machine learning approaches obtained based on multi-layer 2D models as well as 3D models. The main findings were (i) that 3rd degree polynomials provided the best results for SOC and BD (R2 = 0.99 and R2 = 0.98; RMSE = 0.36% and 0.07 g cm-3). However, they did not adequately describe the general asymptotic trend of SOC and BD. In this respect the exponential (SOC: R2 = 0.94; RMSE = 0.56%) and logarithmic (BD: R2 = 84; RMSE = 0.21 g cm-3) functions provided more reliable estimates. (ii) random forests with the exponential function for SOC correlated better with the corresponding 2.5D predictions (R2: 0.96 to 0.75), compared to the 3rd degree polynomials (R2: 0.89 to 0.15) which support vector machines fitted best. We recommend not to use polynomial functions with sparsely sampled profiles, as they have many turning points and tend to overfit the data on a given profile. This may limit the spatial prediction capacities. Instead, less adaptive functions with a higher degree of generalisation such as exponential and logarithmic functions should be used to spatially map sparse vertical soil profile datasets. We conclude that spatial prediction of SOC using exponential depth functions, in conjunction with random forests is well suited for 3D SOC stock modelling, and provides much finer vertical resolutions compared to 2.5D approaches.


Asunto(s)
Carbono/análisis , Suelo/química , China , Gráficos por Computador , Simulación por Computador , Aprendizaje Automático , Modelos Químicos
6.
Sci Rep ; 9(1): 8635, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201351

RESUMEN

Soil properties and terrain attributes are of great interest to explain and model plant productivity and community assembly (hereafter P&CA). Many studies only sample surface soils, and may therefore miss important variation of deeper soil levels. We aimed to identify a critical soil depth in which the relationships between soil properties and P&CA were strongest due to an ideal interplay among soil properties and terrain attributes. On 27 plots in a subtropical Chinese forest varying in tree and herb layer species richness and tree productivity, 29 soil properties in six depth columns and four terrain attributes were analyzed. Soil properties varied with soil depth as did their interrelationships. Non-linearity of soil properties led to critical soil depths in which different P&CA characteristics were explained best (using coefficients of determination). The strongest relationship of soil properties and terrain attributes to most of P&CA characteristics (adj. R2 ~ 0.7) was encountered using a soil column of 0-16 cm. Thus, depending on the biological signal one is interested in, soil depth sampling has to be adapted. Considering P&CA in subtropical broad-leaved secondary forests, we recommend sampling one bulk sample of a column from 0 cm down to a critical soil depth of 16 cm.


Asunto(s)
Bosques , Plantas/metabolismo , Suelo/química , Biomasa , Modelos Teóricos , Estadísticas no Paramétricas
7.
Ecol Evol ; 7(24): 10652-10674, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299246

RESUMEN

Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.

8.
PLoS One ; 10(6): e0128084, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26079260

RESUMEN

Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree's leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species.


Asunto(s)
Cunninghamia/anatomía & histología , Bosques , Hojas de la Planta/anatomía & histología , Lluvia , Suelo , Árboles/anatomía & histología , Biodiversidad , China , Ecosistema , Lluvia/química , Suelo/química , Especificidad de la Especie , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA