Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541197

RESUMEN

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Asunto(s)
Gota , Hominidae , Hiperuricemia , Adulto , Animales , Humanos , Ratones , Gota/genética , Gota/metabolismo , Hominidae/genética , Hiperuricemia/genética , Mamíferos/metabolismo , Urato Oxidasa/genética , Ácido Úrico/metabolismo , Evolución Molecular
3.
J Biol Chem ; 300(3): 105742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346537

RESUMEN

Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.


Asunto(s)
Empalme Alternativo , ADN Satélite , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , ARN Bicatenario , Humanos , Empalme Alternativo/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Progresión de la Enfermedad , Invasividad Neoplásica/genética , ADN Satélite/genética
4.
J Hepatol ; 76(1): 53-62, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478763

RESUMEN

BACKGROUND & AIMS: HBV causes hepatocellular carcinoma (HCC). While it was recently shown that the ability of HBV X protein (HBx) to impair the Smc5/6 (structural maintenance of chromosome 5/6) complex is important for viral transcription, HBx is also a potent driver of HCC. However, the mechanism by which HBx expression induces hepatocarcinogenesis is unclear. METHODS: Degradation of the Smc5/6 complex and accumulation of DNA damage were observed in both in vivo and in vitro HBV infection models. Rescue experiments were performed using nitazoxanide (NTZ), which inhibits degradation of the Smc5/6 complex by HBx. RESULTS: HBx-triggered degradation of the Smc5/6 complex causes impaired homologous recombination (HR) repair of DNA double-strand breaks (DSBs), leading to cellular transformation. We found that DNA damage accumulated in the liver tissue of HBV-infected humanized chimeric mice, HBx-transgenic mice, and human tissues. HBx suppressed the HR repair of DSBs, including that induced by the CRISPR-Cas9 system, in an Smc5/6-dependent manner, which was rescued by restoring the Smc5/6 complex. NTZ restored HR repair in, and colony formation by, HBx-expressing cells. CONCLUSIONS: Degradation of the Smc5/6 complex by HBx increases viral transcription and promotes cellular transformation by impairing HR repair of DSBs. LAY SUMMARY: The hepatitis B virus expresses a regulatory protein called HBV X protein (or HBx). This protein degrades the Smc5/6 complex in human hepatocytes, which is essential for viral replication. We found that this process also plays a key role in the accumulation of DNA damage, which contributes to HBx-mediated tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/efectos adversos , Proteínas Cromosómicas no Histona/efectos adversos , Reparación del ADN por Recombinación/efectos de los fármacos , Transactivadores/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/efectos de los fármacos , Animales , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Ratones , Reparación del ADN por Recombinación/inmunología , Estadísticas no Paramétricas
5.
Biochem Biophys Res Commun ; 607: 89-95, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35367833

RESUMEN

DNA repair processes represent attractive synthetic lethal targets because many cancers exhibit impaired DNA repair pathways, which leads to dependence on specific repair proteins. The finding that poly (ADP-ribose) polymerase (PARP)-1 inhibitors are highly effective against cancers with deficient homologous recombination highlights the potential of this approach. In hepatitis B viral (HBV) infection, degradation of the structural maintenance of the chromosome 5/6 (Smc5/6) complex, which plays a key role in repairing double-stranded DNA breaks by homologous recombination, is induced by HBV regulatory protein X (HBx). Here, we hypothesized that a deficiency in the Smc5/6 complex in HBV-associated hepatocellular carcinoma (HCC) increases susceptibility to PARP inhibitors via a deficiency in homologous recombination. We confirmed impaired double-stranded DNA break repair in HBx-expressing HCC cells using a sensitive reporter to monitor homologous recombination. Treatment with a PARP inhibitor was significantly more effective against HBx-expressing HCC cells, and overexpression of Smc5/6 prevented these effects. Overall, our results suggest that homologous recombination deficiency in HBV-associated HCC leads to increased susceptibility to PARP inhibitors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Recombinación Homóloga , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
6.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887229

RESUMEN

Previous RNA immunoprecipitation followed by proteomic approaches successfully demonstrated that Embryonic Lethal, Abnormal Vision, Drosophila-Like 1 (ELAVL1) interacts with hepatitis B virus (HBV)-derived RNAs. Although ELAVL family proteins stabilize AU-rich element (ARE)-containing mRNAs, their role in HBV transcription remains unclear. This study conducted loss-of-function assays of ELAVL1 for inducible HBV-replicating HepAD38 cells and HBx-overexpressed HepG2 cells. In addition, clinicopathological analyses in primary hepatocellular carcinoma (HCC) surgical samples were also conducted. Lentivirus-mediated short hairpin RNA knockdown of ELAVL1 resulted in a decrease in both viral RNA transcription and production of viral proteins, including HBs and HBx, probably due to RNA stabilization by ELAVL1. Cell growth of HepAD38 cells was more significantly impaired in ELAVL1-knockdown than those in the control group, with or without HBV replication, indicating that ELAVL1 is involved in proliferation by factors other than HBV-derived RNAs. Immunohistochemical analyses of 77 paired HCC surgical specimens demonstrated that diffuse ELAVL1 expression was detected more frequently in HCC tissues (61.0%) than in non-tumor tissues (27.3%). In addition, the abundant expression of ELAVL1 tended to affect postoperative recurrence in HBV-related HCC patients. In conclusion, ELAVL1 contributes not only to HBV replication but also to HCC cell growth. It may be a potent therapeutic target for HBV-related HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Drosophila/genética , Células Hep G2 , Hepatitis B/complicaciones , Hepatitis B/genética , Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Neoplasias Hepáticas/metabolismo , Proteómica , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/genética
7.
Semin Liver Dis ; 41(2): 142-149, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33984871

RESUMEN

Current treatments for hepatitis B virus (HBV) using nucleos(t)ide analogs cannot eliminate the risk of hepatocellular carcinoma (HCC) development. As HBV-associated HCC can develop even in the absence of liver cirrhosis, HBV is regarded to possess direct oncogenic potential. HBV regulatory protein X (HBx) has been identified as a primary mediator of HBV-mediated hepatocarcinogenesis. A fragment of the HBV genome that contains the coding region of HBx is commonly integrated into the host genome, resulting in the production of aberrant proteins and subsequent hepatocarcinogenesis. Besides, HBx interferes with the host DNA or deoxyribonucleic acid damage repair pathways, signal transduction, epigenetic regulation of gene expression, and cancer immunity, thereby promoting carcinogenesis in the noncirrhotic liver. However, numerous molecules and pathways have been implicated in the development of HBx-associated HCC, suggesting that the mechanisms underlying HBx-mediated hepatocarcinogenesis remain to be elucidated.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transactivadores , Proteínas Reguladoras y Accesorias Virales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Epigénesis Genética , Virus de la Hepatitis B/genética , Humanos , Neoplasias Hepáticas/genética
8.
J Hum Genet ; 66(2): 181-191, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32879441

RESUMEN

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are produced from pre-mRNAs through a process known as back-splicing. Although circRNAs are expressed under specific conditions, current understanding of their comprehensive expression status is still limited. Here, we performed a large-scale circRNA profiling analysis in human pancreatic ductal adenocarcinoma (PDAC) tissues, using circular RNA-specific RNA sequencing. We identified more than 40,000 previously unknown circRNAs, some of which were upregulated in PDAC tissues, compared with normal pancreatic tissues. We determined the full-length sequence of a circRNA upregulated in PDAC, which was derived from two noncoding RNA loci on chromosome 12. The novel circRNA, named circPDAC RNA, was not expressed in normal human cells, but was expressed in PDAC and other carcinoma cells. While postulated biological functions, such as peptide production from the circPDAC RNA, were not detected, its aberrant expression was confirmed in other PDAC tissues and in serum from a PDAC patient. These results demonstrate that comprehensive studies are necessary to reveal the expression status of circRNAs and that the circPDAC RNA identified here might serve as a novel biomarker for cancers, including PDAC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , ARN Circular/genética , Carcinoma Ductal Pancreático/genética , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Análisis de Secuencia de ARN , Células Tumorales Cultivadas
9.
J Clin Biochem Nutr ; 68(1): 73-77, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33536715

RESUMEN

The risk allele of a single nucleotide polymorphism (SNP) rs2294008 in the Prostate stem cell antigen (PSCA) gene is strongly associated with gastric cancer. Although the Kyoto classification score is believed to be an indicator of gastric cancer risk, it lacks supporting genetic evidence. We investigated the effect of this risk allele of PSCA SNP on the Kyoto score. Participants without a history of gastric cancer or Helicobacter pylori (H. pylori) eradication underwent esophagogastroduodenoscopy, H. pylori evaluation, and SNP genotyping. The Kyoto score is the sum of scores obtained from endoscopy-based atrophy, intestinal metaplasia, enlarged folds, nodularity, and diffuse redness. The Kyoto score is novel in the light of scoring for gastritis. A total of 323 patients were enrolled (number of individuals with genotype CC: 52; CT: 140; TT: 131, average age: 50.1 years, male: 50.8%). The patient baseline characteristics including age, sex, body mass index, smoking, drinking, family history of gastric cancer, and H. pylori status had no association with PSCA SNP. The Kyoto score was higher in T (CT or TT genotype; risk allele) carriers than in CC carriers. Atrophy, enlarged folds, and diffuse redness scores were higher in T allele carriers (risk allele) than in CC genotype individuals. In multivariate analysis, the Kyoto score was independently associated with PSCA SNP (OR: 1.30, p = 0.012). Thus, the Kyoto score was associated with a genetic predisposition.

10.
J Clin Biochem Nutr ; 68(1): 101-104, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33536719

RESUMEN

The ABC method combined with Helicobacter pylori antibody and serum pepsinogen is a useful predictive method for stomach cancer. Kyoto classification is a new grading system for endoscopic gastritis. However, the consistency of the Kyoto score with the ABC method remains unclear. The Kyoto classification score, which ranges from 0 to 8, is based on the following findings: atrophy, intestinal metaplasia, diffuse redness, nodularity, and enlarged folds. Furthermore, we defined a simplified Kyoto classification score as the sum of scores of just atrophy and intestinal metaplasia. The association between the Kyoto classification score and the ABC method was analyzed using the Kruskal-Wallis and Steel-Dwass tests. A total of 307 subjects were enrolled. Kyoto classification scores were similar in groups B, C, and D, while scores in group A were significantly lower than those of the other groups. The simplified Kyoto classification score showed the same stepwise increase as the classification of the ABC method. In conclusion, unlike the Kyoto classification score, the simplified Kyoto score showed the same significant stepwise increase as the classification of the ABC method.

11.
Hepatology ; 69(5): 1903-1915, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30586159

RESUMEN

Hepatitis B virus (HBV) infection is a major health concern worldwide. To prevent HBV-related mortality, elimination of viral proteins is considered the ultimate goal of HBV treatment; however, currently available nucleos(t)ide analogs rarely achieve this goal, as viral transcription from episomal viral covalently closed circular DNA (cccDNA) is not prevented. HBV regulatory protein X was recently found to target the protein structural maintenance of chromosomes 5/6 (Smc5/6) for ubiquitination and degradation by DDB1-CUL4-ROC1 E3 ligase, resulting in enhanced viral transcription from cccDNA. This ubiquitin-dependent proteasomal pathway requires an additional ubiquitin-like protein for activation, neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8). Here, we show that pevonedistat, a NEDD8-activating enzyme inhibitor, works efficiently as an antiviral agent. Pevonedistat significantly restored Smc5/6 protein levels and suppressed viral transcription and protein production in the HBV minicircle system in in vitro HBV replication models and in human primary hepatocytes infected naturally with HBV. Conclusion: These results indicate that pevonedistat is a promising compound to treat chronic HBV infection.


Asunto(s)
Ciclopentanos/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Pirimidinas/farmacología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ciclopentanos/uso terapéutico , Evaluación Preclínica de Medicamentos , Células HEK293 , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Humanos , Cultivo Primario de Células , Pirimidinas/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral/efectos de los fármacos
12.
Biochem Biophys Res Commun ; 486(2): 521-525, 2017 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-28322797

RESUMEN

Major histocompatibility complex class I polypeptide-related sequence A (MICA) is a prototypical NKG2D ligand. Because immune cells, such as natural killer (NK) cells, recognize virally infected or transformed cells and eliminate them through the interaction between NKG2D receptors on NK cells and NKG2D ligands on pathogenic cells, MICA expression levels are associated with NK cell-mediated immunity. Here, we report that an engineered clustered regularly interspaced short palindromic repeats-Cas9-related complex targeting MICA gene promoter sequences activates transcription of the MICA gene from its endogenous locus. Inhibiting microRNA function, which targets the 3' untranslated region of the MICA gene, enhances this activation. These results demonstrate that the combination of Cas9-based transcriptional activators and simultaneous modulation of microRNA function may be a powerful tool for enhancing MICA protein expression and efficient anti-pathogenic cell immunity.


Asunto(s)
Regiones no Traducidas 3' , Sistemas CRISPR-Cas , Antígenos de Histocompatibilidad Clase I/genética , MicroARNs/genética , Activación Transcripcional , Secuencia de Bases , Línea Celular Tumoral , Citometría de Flujo , Ingeniería Genética , Células Hep G2 , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunidad Innata , MicroARNs/inmunología , Regiones Promotoras Genéticas
13.
Hepatol Commun ; 7(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938099

RESUMEN

BACKGROUND: Precision medicine and customized therapeutics based on the features of each patient are important for maximizing therapeutic effects. Because most cases of HCC occur in the damaged liver through various etiologies, such as hepatitis virus infection, steatohepatitis, and autoimmune hepatitis, there should be a rationale for the choice of therapeutic options based on these etiologies. Although cabozantinib, an oral multikinase inhibitor, has demonstrated clinical effectiveness in advanced HCC, subgroup analyses showed a lower HR for death in HBV-related HCC. This study aimed to determine the therapeutic effects of cabozantinib in HBV-related HCC. METHODS: Using HBV infection models and gene knockout cells, we determined the crucial signaling axis responsible for the effects of cabozantinib on HBV. A chromatin immunoprecipitation assay was performed to determine the interaction between the signaling molecules and HBV DNA. Agonists and inhibitors were used for confirmation. RESULTS: Cabozantinib inhibited HBV replication through the HGF-mesenchymal-epithelial transition factor-signal transducer and activator of transcription 3 (MET-STAT3) signaling axis. The importance of STAT3 in viral replication has been confirmed using gene-edited STAT3 knockout cells. The chromatin immunoprecipitation assay revealed that the binding levels of phosphorylated STAT3 to enhancer region 1 of HBV covalently closed circular DNA were significantly increased by HGF stimulation. CONCLUSIONS: Cabozantinib has favorable therapeutic effects on HBV-related HCC because it inhibits HCC not only directly but also indirectly by means of inhibitory effects on HBV.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/genética , Factor de Transcripción STAT3/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico
14.
iScience ; 26(2): 106021, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36798431

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to the difficulty of its diagnosis. Because human satellite II (HSATII) RNA, a satellite repeat RNA, is highly and specifically expressed in human PDAC, the serum HSATII RNA level may be a biomarker of PDAC. To measure the serum HSATII RNA level with high sensitivity and reproducibility, we previously developed a convenient method, tandem repeat amplification by nuclease protection (TRAP) combined with droplet digital PCR (ddPCR). Here, we refined the original method by simultaneously measuring the serum miR-21-5p level to enhance the detection of PDAC. The resulting PDAC-Index, constructed using serum HSATII RNA and miR-21-5p levels, discriminated patients with PDAC with high accuracy. We verified the clinical usefulness of the PDAC-Index as a supportive test in difficult-to-diagnose cases. The PDAC-Index has satisfactory diagnostic performance and may routinely be applied for detecting PDAC.

15.
Cell Death Discov ; 9(1): 467, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135680

RESUMEN

IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.

16.
Cancer Gene Ther ; 29(5): 505-518, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833413

RESUMEN

Mutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Carcinogénesis , Carcinoma Ductal Pancreático/metabolismo , Humanos , Mutación , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
17.
Heliyon ; 7(7): e07586, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34345745

RESUMEN

Although nucleos(t)ide analogs and interferons suppress hepatitis B virus (HBV) replication, they must be taken continuously and have a low response rate. Therefore, therapeutics for HBV with novel modes of action are needed. Humanized virus-suppressing factor (hzVSF) is a monoclonal antibody against vimentin that exhibits broad-spectrum antiviral activity. Here, hzVSF significantly inhibited HBV infection. Although hzVSF inhibited HBV RNA production, it did not affect viral transcription from minicircle DNA mimicking covalently closed circular DNA. Additionally, hzVSF did not inhibit viral protein or DNA release from infected cells. Rather, hzVSF inhibited the cell entry of viral preS1 peptides, possibly by altering intracellular vimentin localization, which is important for HBV cell entry. These results suggest that hzVSF has therapeutic potential for HBV infection with a novel mode of action.

18.
Sci Rep ; 10(1): 15556, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968163

RESUMEN

MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 significantly reduced the soluble MICA level in culture medium and increased the MICA level on the surface of cancer cells. The effect was indirect, being mediated by increased expression of tissue inhibitor of metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the effect of URB597, confirming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of immune-mediated clearance.


Asunto(s)
Amidohidrolasas/genética , Antígenos de Histocompatibilidad Clase I/genética , Inhibidor Tisular de Metaloproteinasa-3/genética , Benzamidas/química , Benzamidas/farmacología , Carbamatos/química , Carbamatos/farmacología , Línea Celular Tumoral , Medios de Cultivo/química , Medios de Cultivo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/efectos de los fármacos , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología
19.
Endosc Int Open ; 8(6): E775-E782, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490163

RESUMEN

Background and study aims Adenoma detection rate (ADR) is an important quality indicator in colonoscopy, and improved ADR decreases the incidence of colorectal cancer. We investigated differences in polyp detection according to the endoscopist's ADR. Patients and methods We performed a propensity-score matching study using baseline patient characteristics of age, sex, body mass index, family history of colorectal cancer, smoking, drinking, indication for colonoscopy, bowel preparation, and colonoscope type. We compared polyp detection and colonoscopy procedures between patients who underwent colonoscopy by high-ADR endoscopists (high ADR group) and by low-ADR endoscopists (low ADR group). Results We matched 334 patients in the high ADR group with 334 in the low ADR group. The ADR was 44.0 % and 26.9 % for the high-ADR and low-ADR endoscopists, respectively. Proximal, nonprotruding, and diminutive adenomas were more frequently detected by high-ADR endoscopists than by low-ADR endoscopists (all P  < 0.001); similarly, more high-risk adenomas were detected by high-ADR endoscopists ( P  = 0.028). Furthermore, more sessile serrated polyps detected by high-ADR endoscopists ( P  = 0.041). High-ADR endoscopists more frequently performed pancolonic chromoendoscopy ( P  < 0.001). Conclusions Expert detectors often found nonprotruding and diminutive adenomas in the proximal colon along with increased detection rate of high-risk adenomas. Low-ADR endoscopists need to recognize the features of missed adenomas to improve their ADRs.

20.
J Vis Exp ; (154)2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31904023

RESUMEN

There is an urgent need for novel therapeutic agents for hepatitis B virus (HBV) infection. Although currently available nucleos(t)ide analogs potently inhibit viral replication, they have no direct effect on the expression of viral proteins transcribed from a viral covalently closed circular DNA (cccDNA). As high viral antigen load may play a role in this chronic and HBV-related carcinogenesis, the goal of HBV treatment is to eradicate viral proteins. HBV regulatory protein X (HBx) binds to the host DNA damage-binding protein 1 (DDB1) protein to degrade structural maintenance of chromosomes 5/6 (Smc5/6), resulting in activation of viral transcription from cccDNA. Here, using a split luciferase complementation assay system, we present a comprehensive compound screening system to identify inhibitors of the HBx-DDB1 interaction. Our protocol enables easy detection of interaction dynamics in real time within living cells. This technique may become a key assay to discover novel therapeutic agents for treatment of HBV infection.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Pruebas de Enzimas/métodos , Luciferasas/metabolismo , Transactivadores/metabolismo , Células HEK293 , Humanos , Luciferasas/genética , Unión Proteica , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA