Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Neurosci ; 41(31): 6714-6725, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34183446

RESUMEN

An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience into a coherent memory. Hippocampal time cells-neurons that represent temporal information-may play a critical role in this process. Although these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity exists in the human hippocampus. Here, we show that temporal context modulates the firing activity of human hippocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10 s gap periods between trials while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity, both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could play an essential role in temporally organizing distinct moments of an experience in episodic memory.SIGNIFICANCE STATEMENT Episodic memory refers to our ability to remember the what, where, and when of a past experience. Representing time is an important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as during 10-s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of time in the human hippocampus.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Neuronas/fisiología , Percepción del Tiempo/fisiología , Adulto , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
2.
Neuroimage ; 197: 806-817, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28648888

RESUMEN

High resolution laminar fMRI is beginning to probe responses in the different layers of cortex. What can we expect this exciting new technique to discover about cortical processing and how can we verify that it is producing an accurate picture of the underlying laminar differences in neural processing? This review will address our knowledge of laminar cortical circuitry gained from electrophysiological studies in macaque monkeys with a focus on the primary visual cortex, as this area has been most often targeted in both laminar electrophysiological and fMRI studies. We will review how recent studies are attempting to verify the accuracy of laminar fMRI by recreating the known laminar profiles of various neural tuning properties. Furthermore, we will examine how feedforward and feedback-related neural processes engage different cortical layers, producing canonical patterns of spiking and synaptic activity as estimated by the analysis of current-source density. These results provide a benchmark for recent studies aiming to examine the profiles of bottom-up and top-down processes with laminar fMRI. Finally, we will highlight particularly useful paradigms and approaches which may help us to understand processing in the different layers of the human cerebral cortex.


Asunto(s)
Benchmarking , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Animales , Mapeo Encefálico/métodos , Mapeo Encefálico/normas , Humanos , Imagen por Resonancia Magnética/normas
3.
PLoS Biol ; 14(3): e1002420, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27015604

RESUMEN

Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.


Asunto(s)
Corteza Visual/fisiología , Percepción Visual/fisiología , Potenciales de Acción , Adulto , Animales , Atención/fisiología , Femenino , Humanos , Macaca , Imagen por Resonancia Magnética
4.
Cereb Cortex ; 26(10): 3964-76, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27522074

RESUMEN

Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure-ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both.We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression.We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current-source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure-ground organization.


Asunto(s)
Neuronas/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Atención/fisiología , Electrodos Implantados , Medidas del Movimiento Ocular , Haplorrinos , Pruebas Neuropsicológicas , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador
5.
Proc Natl Acad Sci U S A ; 111(40): 14332-41, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25205811

RESUMEN

Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Estimulación Eléctrica , Potenciales Evocados Visuales/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Macaca , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa , Valina/análogos & derivados , Valina/farmacología
6.
J Neurosci ; 34(18): 6303-15, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790201

RESUMEN

Glutamate receptors mediate excitatory neurotransmission. A very prevalent type of glutamate receptor in the neocortex is the AMPA receptor (AMPAR). AMPARs mediate fast synaptic transmission and their functionality depends on the subunit composition. In primary visual cortex (area V1), the density and subunit composition of AMPARs differ among cortical layers and among cell types. The AMPARs expressed by the different types of inhibitory interneurons, which are crucial for network function, have not yet been characterized systematically. We investigated the distribution of AMPAR subunits in macaque V1 for three distinct subpopulations of inhibitory interneurons: parvalbumin-immunoreactive (PV-IR) interneurons, calbindin-immunoreactive (CB-IR) interneurons, and calretinin-immunoreactive (CR-IR) interneurons. We found that PV-IR cells, which have previously been identified as fast spiking, show high expression of the GluA2 and GluA3 subunits. In contrast, CB-IR and CR-IR cells, which tend to be intermediate spiking, show high expression of the GluA1 and GluA4 subunits. Thus, our data demonstrate that the expression of AMPARs divides inhibitory interneurons in macaque V1 into two categories that are compatible with existing classification methods based on calcium-binding proteins and firing behavior. Moreover, our findings suggest new approaches to target the different inhibitory interneuron classes pharmacologically in vivo.


Asunto(s)
Interneuronas/clasificación , Interneuronas/metabolismo , Inhibición Neural/fisiología , Receptores AMPA/metabolismo , Corteza Visual/citología , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Macaca mulatta , Masculino , Parvalbúminas/metabolismo , Subunidades de Proteína/metabolismo
7.
J Neurosci ; 34(28): 9290-304, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009262

RESUMEN

The firing rates of neurons in primary visual cortex (V1) are suppressed by large stimuli, an effect known as surround suppression. In cats and monkeys, the strength of suppression is sensitive to orientation; responses to regions containing uniform orientations are more suppressed than those containing orientation contrast. This effect is thought to be important for scene segmentation, but the underlying neural mechanisms are poorly understood. We asked whether it is possible to study these mechanisms in the visual cortex of mice, because of recent advances in technology for studying the cortical circuitry in mice. It is unknown whether neurons in mouse V1 are sensitive to orientation contrast. We measured the orientation selectivity of surround suppression in the different layers of mouse V1. We found strong surround suppression in layer 4 and the superficial layers, part of which was orientation tuned: iso-oriented surrounds caused more suppression than cross-oriented surrounds. Surround suppression was delayed relative to the visual response and orientation-tuned suppression was delayed further, suggesting two separate suppressive mechanisms. Previous studies proposed that surround suppression depends on the activity of inhibitory somatostatin-positive interneurons in the superficial layers. To test the involvement of the superficial layers we topically applied lidocaine. Silencing of the superficial layers did not prevent orientation-tuned suppression in layer 4. These results show that neurons in mouse V1, which lacks orientation columns, show orientation-dependent surround suppression in layer 4 and the superficial layers and that surround suppression in layer 4 does not require contributions from neurons in the superficial layers.


Asunto(s)
Red Nerviosa/fisiología , Inhibición Neural/fisiología , Orientación/fisiología , Percepción Espacial/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos
8.
Proc Natl Acad Sci U S A ; 109(27): 11031-6, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22615394

RESUMEN

Neurons in the primary visual cortex (V1) receive feedforward input from the thalamus, which shapes receptive-field properties. They additionally receive recurrent inputs via horizontal connections within V1 and feedback from higher visual areas that are thought to be important for conscious visual perception. Here, we investigated what roles different glutamate receptors play in conveying feedforward and recurrent inputs in macaque V1. As a measure of recurrent processing, we used figure-ground modulation (FGM), the increased activity of neurons representing figures compared with background, which depends on feedback from higher areas. We found that feedforward-driven activity was strongly reduced by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas this drug had no effect on FGM. In contrast, blockers of the NMDA receptor reduced FGM, whereas their effect on visually driven activity varied with the subunit specificity of the drug. The NMDA receptor blocker 2-amino-5-phosphonovalerate (APV) caused a slight reduction of the visual response, whereas ifenprodil, which targets NMDA receptors containing the NMDA receptor NR2B subunit, increased the visual response. These findings demonstrate that glutamate receptors contribute differently to feedforward and recurrent processing in V1 and suggest ways to selectively disrupt recurrent processing so that its role in visual perception can be elucidated.


Asunto(s)
Macaca mulatta/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Estimulación Luminosa/métodos , Tálamo/citología , Corteza Visual/citología , Vías Visuales/citología , Vías Visuales/fisiología
9.
J Vis ; 15(2): 2, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25645435

RESUMEN

Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system.


Asunto(s)
Sensibilidad de Contraste/fisiología , Orientación , Reconocimiento Visual de Modelos/fisiología , Adulto , Femenino , Humanos , Masculino
10.
Elife ; 132024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270590

RESUMEN

Object detection is an essential function of the visual system. Although the visual cortex plays an important role in object detection, the superior colliculus can support detection when the visual cortex is ablated or silenced. Moreover, it has been shown that superficial layers of mouse SC (sSC) encode visual features of complex objects, and that this code is not inherited from the primary visual cortex. This suggests that mouse sSC may provide a significant contribution to complex object vision. Here, we use optogenetics to show that mouse sSC is involved in figure detection based on differences in figure contrast, orientation, and phase. Additionally, our neural recordings show that in mouse sSC, image elements that belong to a figure elicit stronger activity than those same elements when they are part of the background. The discriminability of this neural code is higher for correct trials than for incorrect trials. Our results provide new insight into the behavioral relevance of the visual processing that takes place in sSC.


Asunto(s)
Colículos Superiores , Corteza Visual , Animales , Ratones , Optogenética , Percepción Visual
11.
Elife ; 122024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38192196

RESUMEN

Detailed characterization of interneuron types in primary visual cortex (V1) has greatly contributed to understanding visual perception, yet the role of chandelier cells (ChCs) in visual processing remains poorly characterized. Using viral tracing we found that V1 ChCs predominantly receive monosynaptic input from local layer 5 pyramidal cells and higher-order cortical regions. Two-photon calcium imaging and convolutional neural network modeling revealed that ChCs are visually responsive but weakly selective for stimulus content. In mice running in a virtual tunnel, ChCs respond strongly to events known to elicit arousal, including locomotion and visuomotor mismatch. Repeated exposure of the mice to the virtual tunnel was accompanied by reduced visual responses of ChCs and structural plasticity of ChC boutons and axon initial segment length. Finally, ChCs only weakly inhibited pyramidal cells. These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of their axon initial segments during behaviorally relevant events.


Asunto(s)
Neuronas , Corteza Visual , Animales , Ratones , Células Piramidales , Interneuronas , Nivel de Alerta
13.
Sci Adv ; 9(3): eadd2498, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662858

RESUMEN

Neurons in the primary visual cortex (V1) respond to stimuli in their receptive field (RF), which is defined by the feedforward input from the retina. However, V1 neurons are also sensitive to contextual information outside their RF, even if the RF itself is unstimulated. Here, we examined the cortical circuits for V1 contextual responses to gray disks superimposed on different backgrounds. Contextual responses began late and were strongest in the feedback-recipient layers of V1. They differed between the three main classes of inhibitory neurons, with particularly strong contextual drive of VIP neurons, indicating a contribution of disinhibitory circuits to contextual drive. Contextual drive was strongest when the gray disk was perceived as figure, occluding its background, rather than a hole. Our results link contextual drive in V1 to perceptual organization and provide previously unknown insight into how recurrent processing shapes the response of sensory neurons to facilitate figure perception.


Asunto(s)
Corteza Visual , Ratones , Animales , Corteza Visual/fisiología , Neuronas/fisiología , Retina , Neuronas Aferentes , Orientación/fisiología , Percepción Visual/fisiología , Estimulación Luminosa/métodos
14.
Curr Biol ; 33(18): 3865-3871.e3, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37643620

RESUMEN

Neuronal activity in the primary visual cortex (V1) is driven by feedforward input from within the neurons' receptive fields (RFs) and modulated by contextual information in regions surrounding the RF. The effect of contextual information on spiking activity occurs rapidly and is therefore challenging to dissociate from feedforward input. To address this challenge, we recorded the spiking activity of V1 neurons in monkeys viewing either natural scenes or scenes where the information in the RF was occluded, effectively removing the feedforward input. We found that V1 neurons responded rapidly and selectively to occluded scenes. V1 responses elicited by occluded stimuli could be used to decode individual scenes and could be predicted from those elicited by non-occluded images, indicating that there is an overlap between visually driven and contextual responses. We used representational similarity analysis to show that the structure of V1 representations of occluded scenes measured with electrophysiology in monkeys correlates strongly with the representations of the same scenes in humans measured with functional magnetic resonance imaging (fMRI). Our results reveal that contextual influences rapidly alter V1 spiking activity in monkeys over distances of several degrees in the visual field, carry information about individual scenes, and resemble those in human V1. VIDEO ABSTRACT.


Asunto(s)
Corteza Visual , Percepción Visual , Animales , Humanos , Percepción Visual/fisiología , Haplorrinos , Corteza Visual Primaria , Corteza Visual/fisiología , Campos Visuales , Estimulación Luminosa/métodos
15.
Elife ; 112022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448671

RESUMEN

Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here, we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.


Asunto(s)
Memoria Episódica , Humanos
16.
Elife ; 112022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326213

RESUMEN

Based on neuroimaging data, the insula is considered important for people to empathize with the pain of others. Here, we present intracranial electroencephalographic (iEEG) recordings and single-cell recordings from the human insula while seven epilepsy patients rated the intensity of a woman's painful experiences seen in short movie clips. Pain had to be deduced from seeing facial expressions or a hand being slapped by a belt. We found activity in the broadband 20-190 Hz range correlated with the trial-by-trial perceived intensity in the insula for both types of stimuli. Within the insula, some locations had activity correlating with perceived intensity for our facial expressions but not for our hand stimuli, others only for our hand but not our face stimuli, and others for both. The timing of responses to the sight of the hand being hit is best explained by kinematic information; that for our facial expressions, by shape information. Comparing the broadband activity in the iEEG signal with spiking activity from a small number of neurons and an fMRI experiment with similar stimuli revealed a consistent spatial organization, with stronger associations with intensity more anteriorly, while viewing the hand being slapped.


Asunto(s)
Expresión Facial , Dolor , Femenino , Humanos , Imagen por Resonancia Magnética , Dimensión del Dolor , Mano , Mapeo Encefálico
18.
J Neurosci ; 30(38): 12745-58, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20861379

RESUMEN

The perceptual salience and visibility of image elements is influenced by other elements in their vicinity. The perceptual effect of image elements on an adjacent target element depends on their relative orientation. Collinear flanking elements usually improve sensitivity for the target element, whereas orthogonal elements have a weaker effect. It is believed that the collinear flankers exert these effects through lateral interactions between neurons in the primary visual cortex (area V1), but the precise mechanisms underlying these contextual interactions remain unknown. Here, we directly examined this question by recording the effects of flankers on the responses of V1 neurons at parafoveal representations while monkeys performed a fixation task or a contrast detection task. We found, unexpectedly, that collinear flankers reduce the monkeys' perceptual sensitivity for a central target element. This behavioral effect was explained by a flanker-induced increase in the activity of V1 neurons in the absence of the central target stimulus, which reduced the amplitude of the target response. Our results indicate that the dominant effect of collinear flankers in parafoveal vision is suppression and suggest that these suppressive effects are caused by a decrease in the dynamic range of neurons coding the central target.


Asunto(s)
Fóvea Central/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Análisis de Varianza , Animales , Electrofisiología , Macaca mulatta , Orientación/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
19.
Curr Biol ; 31(24): 5401-5414.e4, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34653360

RESUMEN

After a briefly presented visual stimulus disappears, observers retain a detailed representation of this stimulus for a short period of time. This sensory storage is called iconic memory. We measured iconic memory in the perception of monkeys and its neuronal correlates in the primary visual cortex (area V1). We determined how many milliseconds extra viewing time iconic memory is worth and how it decays by varying the duration of a brief stimulus and the timing of a mask. The V1 activity that persists after the disappearance of a stimulus predicted accuracy, with a time course resembling the worth and decay of iconic memory. Finally, we examined how iconic memory interacts with attention. A cue presented after the stimulus disappears boosts attentional influences pertaining to a relevant part of the stimulus but only if it appears before iconic memory decayed. Our results relate iconic memory to neuronal activity in early visual cortex.


Asunto(s)
Memoria a Corto Plazo , Percepción Visual , Animales , Atención/fisiología , Macaca , Memoria a Corto Plazo/fisiología , Estimulación Luminosa , Corteza Visual Primaria , Percepción Visual/fisiología
20.
Nat Commun ; 12(1): 4839, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376673

RESUMEN

The ability to maintain a sequence of items in memory is a fundamental cognitive function. In the rodent hippocampus, the representation of sequentially organized spatial locations is reflected by the phase of action potentials relative to the theta oscillation (phase precession). We investigated whether the timing of neuronal activity relative to the theta brain oscillation also reflects sequence order in the medial temporal lobe of humans. We used a task in which human participants learned a fixed sequence of pictures and recorded single neuron and local field potential activity with implanted electrodes. We report that spikes for three consecutive items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately preceding and following it) were phase-locked at distinct phases of the theta oscillation. Consistent with phase precession, spikes were fired at progressively earlier phases as the sequence advanced. These findings generalize previous findings in the rodent hippocampus to the human temporal lobe and suggest that encoding stimulus information at distinct oscillatory phases may play a role in maintaining sequential order in memory.


Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Aprendizaje/fisiología , Neuronas/fisiología , Ritmo Teta/fisiología , Adolescente , Adulto , Epilepsia/diagnóstico , Femenino , Hipocampo/citología , Hipocampo/fisiología , Humanos , Masculino , Modelos Neurológicos , Neuronas/citología , Estimulación Luminosa/métodos , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA