Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biol Chem ; 402(7): 849-859, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33725749

RESUMEN

Meningiomas are the most common non-malignant intracranial tumors. Like most tumors, meningiomas prefer anaerobic glycolysis for energy production (Warburg effect). This leads to an increased synthesis of the metabolite methylglyoxal (MGO). This metabolite is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation endproducts (AGEs). In this study, we investigated the influence of glycation on two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). Increasing MGO concentrations led to the formation of AGEs and decreased growth in both cell lines. When analyzing the influence of glycation on adhesion, chemotaxis and invasion, we could show that the glycation of meningioma cells resulted in increased invasive potential of the benign meningioma cell line, whereas the invasive potential of the malignant cell line was reduced. In addition, glycation increased the E-cadherin- and decreased the N-cadherin-expression in BEN-MEN-1 cells, but did not affect the cadherin-expression in IOMM-Lee cells.


Asunto(s)
Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Adhesión Celular , Supervivencia Celular , Productos Finales de Glicación Avanzada/metabolismo , Glucólisis , Humanos , Neoplasias Meníngeas/patología , Meningioma/patología , Piruvaldehído/metabolismo , Células Tumorales Cultivadas
2.
J Neuromuscul Dis ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38875046

RESUMEN

Background: GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective: To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods: A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results: Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions: We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.

3.
Front Biosci (Landmark Ed) ; 28(11): 300, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38062838

RESUMEN

BACKGROUND: A key mechanism in the neuromuscular disease GNE myopathy (GNEM) is believed to be that point mutations in the GNE gene impair sialic acid synthesis - maybe due to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) activity restrictions - and resulting in muscle tissue loss. N-acetylmannosamine (ManNAc) is the first product of the bifunctional GNE enzyme and can therefore be regarded as a precursor of sialic acids. This study investigates whether this is also a suitable substance for restoring the sialic acid content in GNE-deficient cells. METHODS: A HEK-293 GNE-knockout cell line was generated using CRISPR-Cas9 and analyzed for its ability to synthesize sialic acids. The cells were then supplemented with ManNAc to compensate for possible GNE inactivity and thereby restore sialic acid synthesis. Sialic acid levels were monitored by immunoblot and high performance liquid chromatography (HPLC). RESULTS: The HEK-293 GNE-knockout cells showed almost no polysialylation signal (immunoblot) and a reduced overall (-71%) N-acetylneuraminic acid (Neu5Ac) level (HPLC) relative to total protein and normalized to wild type level. Supplementation of GNE-deficient HEK-293 cells with 2 mM ManNAc can restore polysialylation and free intracellular sialic acid levels to wild type levels. The addition of 1 mM ManNAc is sufficient to restore the membrane-bound sialic acid level. CONCLUSIONS: Although the mechanism behind this needs further investigation and although it remains unclear why adding ManNAc to GNE-deficient cells is sufficient to elevate polysialylation back to wild type levels - since this substance is also converted by the GNE, all of this might yet prove helpful in the development of an appropriate therapy for GNEM.


Asunto(s)
Miopatías Distales , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Células HEK293 , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades Neuromusculares/genética , Miopatías Distales/tratamiento farmacológico , Miopatías Distales/genética
4.
Cells ; 12(9)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174618

RESUMEN

Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFß, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Reacción de Maillard , Óxido de Magnesio , Neoplasias Encefálicas/metabolismo , Procesos Neoplásicos
5.
Cells ; 12(23)2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067186

RESUMEN

Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Óxido de Magnesio/uso terapéutico , Reacción de Maillard , Línea Celular Tumoral , Glioma/metabolismo , Sialiltransferasas/genética
6.
Cells ; 10(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34943806

RESUMEN

Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.


Asunto(s)
Meningioma/enzimología , Sialiltransferasas/metabolismo , Línea Celular Tumoral , Gangliósido G(M3)/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Meningioma/genética , Ácido N-Acetilneuramínico/biosíntesis , Piruvaldehído/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sialiltransferasas/genética
7.
J Clin Med ; 9(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545211

RESUMEN

Sialic acids are terminal sugars on the cell surface that are found on all cell types including immune cells like natural killer (NK) cells. The attachment of sialic acids to different glycan structures is catalyzed by sialyltransferases in the Golgi. However, the expression pattern of sialyltransferases in NK cells and their expression after activation has not yet been analyzed. Therefore, the present study determines which sialyltransferases are expressed in human NK cells and if activation with IL-2 changes the sialylation of NK cells. The expression of sialyltransferases was analyzed in the three human NK cell lines NK-92, NKL, KHYG-1 and primary NK cells. NK-92 cells were cultured in the absence or presence of IL-2, and changes in the sialyltransferase expression were measured by qPCR. Furthermore, specific sialylation was investigated by flow cytometry. In addition, polySia and NCAM were measured by Western blot analyses. IL-2 leads to a reduced expression of ST8SIA1, ST6GAL1 and ST3GAL1. α-2,3-Sialylation remained unchanged, while α-2,6-sialylation was increased after IL-2 stimulation. Moreover, an increase in the amount of NCAM and polySia was observed in IL-2-activated NK cells, whereas GD3 ganglioside was decreased. In this study, all sialyltransferases that were expressed in NK cells could be identified. IL-2 regulates the expression of some sialyltransferases and leads to changes in the sialylation of NK cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA