RESUMEN
Coevolution of cellular genetic compartments is a fundamental aspect in eukaryotic genome evolution that becomes apparent in serious developmental disturbances after interspecific organelle exchanges. The genus Oenothera represents a unique, at present the only available, resource to study the role of the compartmentalized plant genome in diversification of populations and speciation processes. An integrated approach involving cDNA cloning, EST sequencing, and bioinformatic data mining was chosen using Oenothera elata with the genetic constitution nuclear genome AA with plastome type I. The Gene Ontology system grouped 1621 unique gene products into 17 different functional categories. Application of arrays generated from a selected fraction of ESTs revealed significantly differing expression profiles among closely related Oenothera species possessing the potential to generate fertile and incompatible plastid/nuclear hybrids (hybrid bleaching). Furthermore, the EST library provides a valuable source of PCR-based polymorphic molecular markers that are instrumental for genotyping and molecular mapping approaches.