Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(2): 1583-1593, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785190

RESUMEN

A polarization-insensitive liquid crystal (LC) Fresnel lens is developed with binary LC configurations of 90°-twisted nematic (TN) and vertically-aligned (VA) domains in the adjacent zones. A LC mixture comprised of nematic host, photopolymer and chiral material is initially filled into the VA cell with orthogonal rubbing treatment. After the ultraviolet irradiation on the filled LC cell through a photomask with Fresnel zone plate pattern, the interactions among orthogonal rubbing treatment, self-assembly polymer gravels, and chiral material induce the 90°-TN structure in the odd zones, whereas the initial VA structures are maintained in the even zones. The fabricated LC Fresnel lens with binary configuration emerges a maximum diffraction efficiency of around 35% at a voltage of 2.3 V, close to the theoretical diffraction limit of around 41%. The diffractive focus of the LC Fresnel lens is polarization-insensitive at the voltage above 2 V. When the voltage reaches 10 V, the diffractive focus vanishes. The numerical calculation confirms that the polarization-insensitive property appears in the primary focus of the LC Fresnel lens. This work reports a simple method to develop a highly efficient, polarization-insensitive, and electrically tunable LC Fresnel lens which is favorable for imaging system.

2.
Opt Express ; 30(6): 9521-9533, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299378

RESUMEN

Liquid crystals (LCs) have been a vital component of modern communication and photonic technologies. However, traditional LC alignment on polyimide (PI) requires mechanically rubbing treatment to control LC orientation, suffering from dust particles, surface damage, and electrostatic charges. In this paper, LC alignment on organic single-crystal rubrene (SCR) has been studied and used to fabricate rubbing-free LC devices. A rubrene/toluene solution is spin-coated on the indium-tin-oxide (ITO) substrate and transformed thereafter to the orthorhombic SCR after annealing. Experimental result reveals that SCR-based LC cell has a homogeneous alignment geometry, the pretilt angle of LCs is low and the orientation of LCs is determined with capillary filling action of LCs. LC alignment on SCR performs a wider thermal tolerance than that on PI by virtue of the strong anchoring nature of LCs on SCR due to van der Waals and π-π electron stacking interactions between the rubrene and LCs. SCR-based LC cell performs a lower operation voltage, faster response time, and higher voltage holding ratio than the traditional PI-based LC cell. Organic SCR enables to play a role as weakly conductive alignment layer without rubbing treatment and offers versatile function to develop novel LC devices.

3.
Opt Express ; 28(5): 6582-6593, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32225903

RESUMEN

A novel approach for fabricating liquid crystal (LC) lenses is presented. The approach involves the use of a photocurable prepolymer dispersed in a cell fabricated with vertically aligned substrates. A radial gradient UV irradiation intensity distribution is produced using a radial variable neutral density filter. Under UV irradiation, the prepolymer diffuses and is then polymerized on the substrate surfaces owing to vertical phase separation. After polymerization, the diameter of the self-assembled polymer gravel on the substrates has a radial gradient distribution, causing a radial gradient pretilt angle (RGPA) distribution on the substrates and producing LC lenses. By numerical simulation, RGPA LC lens has significantly lower supplied voltage than conventionally hole-patterned electrode (HPE) LC lens, and higher lens power. In the experiment, the fabricated RGPA LC lens with aperture size of 5 mm possesses a simple planar electrode structure, low operation voltage (< 4 V), small root mean square wavefront error (< 0.08 λ), and acceptable focusing quality. By the overdriving scheme, the switched-off time of the fabricated RGPA LC lens reaches 0.27 s. With the novel approach, low-voltage LC lenses with different optical aperture sizes can be easily fabricated.

4.
Opt Express ; 28(15): 22856-22866, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752539

RESUMEN

A 4 mm-aperture hole-patterned liquid crystal (LC) lens has been fabricated using a LC mixture, which consisted of rutile titanium dioxide (TiO2) nanoparticles (NPs) and nematic LC E7, for the first time. The TiO2 NP dopant improves the addressing and operation voltages of the LC lens significantly because it strengthens the electric field surrounding the TiO2 NP and increases the capacitance of lens cell. Unlike the doping of common colloidal NPs, that of rutile TiO2 NPs increases the phase transition temperature and birefringence of the LC mixture, thereby helping enhance the lens power of LC lens. In comparison with a pure LC lens, the TiO2 NP-doped one has approximately 50% lower operation voltage because of the strengthened electric field around the NPs and has roughly 2.8 times faster response time because of the decreased rotational viscosity of the LC mixture and the increased interaction between the LC molecules by the NP dopants. Notably, the doping of rutile TiO2 NPs improves the operation voltage, tunable focusing capability, and response time of LC lens simultaneously. Meanwhile, this method does not degrade the focusing and lens qualities. The imaging performances of TiO2 NP-doped LC lens at various voltages are demonstrated practically by tunable focusing on three objectives at different positions. These results introduce NP in the application of LC lenses.

5.
Opt Express ; 28(7): 10572-10582, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225639

RESUMEN

In this study, a large-aperture hole-patterned liquid crystal (LHLC) lens was prepared from a mixture of nematic liquid crystal (NLC, E7) and organic material (N-benzyl-2-methyl-4-nitroaniline, BNA). The electro-optic properties of doped and undoped samples were measured, compared, and analyzed. The doped sample exhibited a response time that was ∼6 times faster than that of the undoped sample because BNA doping decreased the rotational viscosity of the NLC. BNA dopant effectively suppressed the RMS error of LHLC lens addressed at the high voltage. Furthermore, the BNA dopant revealed a considerable absorbance for short wavelengths (< 450 nm), automatically providing the LHLC lens with a blue light filtering function for ophthalmic applications.

6.
Sci Rep ; 13(1): 17044, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813963

RESUMEN

Fresnel zone plates (FZPs) are widely used in integrated optical systems to meet new cutting-edge demands for photonic integration and device miniaturizing. However, their use in applications of cross-scale fabrication still faces several obstacles, such as low efficiency, fixed focal length, single wavelength, large size, and complicated fabrication. Here, we first examine a novel adaptive focal length in white light focusing by using reflective-type and phase-only spatial light modulator (RLC-SLM) based on a liquid crystal on silicon. The device achieves a maximum diffraction efficiency of approximately 38% at primary focal points of binary phase-type FZPs throughout the visible range (red, green, and blue wavelengths). The RLC-SLM focuses the light of the desired wavelength while other sources are defocused. White light focusing and color separation are demonstrated by sequentially and additively switching different FZPs. These recent advances show that optically tunable FRZs are promising potential candidates to enhance adaptive camera systems, microscopes, holograms, and portable and wearable devices, thereby opening up novel possibilities in optical communications and sensing.

7.
Sci Rep ; 11(1): 17349, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462538

RESUMEN

In this study, the response time of a 4 mm-aperture hole-patterned liquid crystal (HLC) lens has been significantly improved with doping of N-benzyl-2-methyl-4-nitroaniline (BNA) and rutile titanium dioxide nanoparticle (TiO2 NP) nanocomposite. The proposed HLC lens provides the focus and defocus times that are 8.5× and 14× faster than the pristine HLC lens, respectively. Meanwhile, the focus and defocus times of the proposed HLC lens reach the order of millisecond. Result shows that the synergistic effect of BNA and TiO2 NP induces a 78% decrement in the viscosity of pristine LC mixture that significantly shortens the focus and defocus times of HLC lens. The remarkable decrement in viscosity is mainly attributed to spontaneous polarization electric fields from the permanent dipole moments of the additives. Besides, the strengthened electric field surrounding TiO2 NP assists in decreasing the focus time of HLC lens. The focus and defocus times of HLC lens are related to the wavefront (or phase profile) bending speed. The time-dependent phase profiles of the HLC lenses with various viscosities are calculated. This result shows the decrease in wavefront bending time is not simply proportional to viscosity decrement. Furthermore, the proposed HLC lens emerges a larger tunable focus capability within smaller voltage interval than the pristine HLC lens.

8.
Polymers (Basel) ; 12(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322206

RESUMEN

Improvements in electro-optical responses of LC devices by doping organic N-benzyl-2-methyl-4-nitroaniline (BNA) and Morpholinium 2-chloro-4-nitrobenzoate (M2C4N) in nematic liquid crystals (LCs) have been reported in this study. BNA and M2C4N-doped LC cells have the fall time that is fivefold and threefold faster than the pristine LC cell, respectively. The superior performance in fall time of BNA-doped LC cell is attributed to the significant decrements in the rotational viscosity and threshold voltage by 44% and 25%, respectively, and a strong additional restoring force resulted from the spontaneous polarization electric field of BNA. On the other hand, the dielectric anisotropy (Δε) of LC mixture is increased by 16% and 6%, respectively, with M2C4N and BNA dopants. M2C4N dopant induces a large dielectric anisotropy, because the phenyl-amine/hydroxyl in M2C4N induces a strong intermolecular interaction with LCs. Furthermore, BNA dopant causes a strong absorbance near the wavelength of 400 nm that filters the blue light. The results indicate that M2C4N doping can be used to develop a high Δε of LC mixture, and BNA doping is appropriate to fabricate a fast response and blue-light filtering LC device. Density Functional Theory calculation also confirms that BNA and M2C4N increase the dipole moment, polarization anisotropy, and hence Δε of LC mixture.

9.
Sci Rep ; 10(1): 14273, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868860

RESUMEN

The dispersion of organic N-benzyl-2-methyl-4-nitroaniline (BNA) in nematic liquid crystals (LCs) is studied. BNA doping decreases the threshold voltage of cell because of the reduced splay elastic constant and increased dielectric anisotropy of the LC mixture. When operated in the high voltage difference condition, the BNA-doped LC cell has a fall time that is five times faster than that of the pure one because of the decrements in the threshold voltage of the cell and rotational viscosity of the LC mixture. The additional restoring force induced by the BNA's spontaneous polarization electric field (SPEF) also assists to decrease the fall time of the LC cell. The decreased viscosity can be deduced from the decrements in phase transition temperature and associated order parameter of the LC mixture. Density functional theory calculation demonstrates that the BNA dopant strengthens the absorbance for blue light, enhances the molecular interaction energy and dipole moment, decreases the molecular energy gap, and thus increases the permittivity of the LC mixture. The calculation also shows that the increased dipole moment, polarizability, and polarizability anisotropy increase the dielectric anisotropy of the LC mixture, which agrees with the experimental results well. BNA doping has a promising application to the fields of LC devices and displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA