RESUMEN
Comprehending symbiont abundance among host species is a major ecological endeavour, and the metabolic theory of ecology has been proposed to understand what constrains symbiont populations. We parameterized metabolic theory equations to investigate how bird species' body size and the body size of their feather mites relate to mite abundance according to four potential energy (uropygial gland size) and space constraints (wing area, total length of barbs and number of feather barbs). Predictions were compared with the empirical scaling of feather mite abundance across 106 passerine bird species (26,604 individual birds sampled), using phylogenetic modelling and quantile regression. Feather mite abundance was strongly constrained by host space (number of feather barbs) but not by energy. Moreover, feather mite species' body size was unrelated to the body size of their host species. We discuss the implications of our results for our understanding of the bird-feather mite system and for symbiont abundance in general.
Asunto(s)
Enfermedades de las Aves , Infestaciones por Ácaros , Ácaros , Passeriformes , Animales , Filogenia , Tamaño Corporal , Infestaciones por Ácaros/veterinariaRESUMEN
Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.
Asunto(s)
Aves/fisiología , Mamíferos/fisiología , Modelos Genéticos , Reproducción/genética , Selección Genética/fisiología , Animales , Evolución Biológica , Conjuntos de Datos como Asunto , Aptitud Genética , Factores de TiempoRESUMEN
The coping style of an individual in relation to potentially dangerous situations has been suggested to be inherited in a polygenic fashion, SERT being one of the candidate genes. In this study, we assessed in free-living great tits (Parus major) the association between SNP290 in the SERT promoter and three standard fear-related behaviors: the response of the birds to a black-and-white flag fixed to the top of the nest box, distress calling rate of the birds in the hand once captured and the hissing call of incubating females when approached by a predator. We found a strong association between SNP290 polymorphism and the three risk-taking behaviors, with birds with genotype CT entering the nest box with the flag faster and displaying more distress calls and fewer hissing calls. CT birds could therefore be described as more proactive than CC individuals. These results also suggest that hissing behavior should be regarded as a fear-induced shy behavior, and confirm that SERT has an important function in relation to risk aversion behaviors and coping style.
Asunto(s)
Passeriformes , Adaptación Psicológica , Animales , Femenino , Genotipo , Humanos , Passeriformes/genética , Polimorfismo Genético , Asunción de RiesgosRESUMEN
The genetic structure of animal populations has considerable behavioural, ecological and evolutionary implications and may arise from various demographic traits. Here, we use observational field data and molecular genetics to determine the genetic structure of an invasive population of monk parakeets, Myiopsitta monachus, at a range of spatial scales, and investigate the demographic processes that generate the observed structure. Monk parakeets construct large nests that can house several pairs occupying separate chambers; these nests are often aggregated within nesting trees. We determined patterns of relatedness within compound nests, within nesting trees and between trees. Spatial autocorrelation analyses of pairwise genetic relatedness revealed fine-scale genetic structure with relatives of both sexes spatially clustered within, but not beyond, nesting trees. In addition, males were more related to males sharing their compound nests than to other males occupying the same nesting tree. By contrast, males and females within compound nests were not significantly more closely related than elsewhere in the same tree, and we found no evidence for inbreeding. Adults showed high breeding site fidelity between years despite considerable disturbance of nest sites. Natal dispersal was female-biased, but dispersal distances were relatively short with some natal philopatry observed in both sexes. Sibling coalitions, typically of males, were observed amongst both philopatric and dispersing birds. Our results show significant clustering of kin within compound nests and nesting trees resulting from limited and coordinated natal dispersal, with subsequent breeding site fidelity. The resulting genetic structure has implications for social behaviour in this unusual parrot species.
Asunto(s)
Loros , Fitomejoramiento , Animales , Evolución Biológica , Femenino , Masculino , Repeticiones de Microsatélite/genética , Periquitos/genéticaRESUMEN
Invasive species can have wide-ranging negative impacts, and an understanding of the process and success of invasions can be vital to determine management strategies, mitigate impacts and predict range expansions of such species. Monk parakeets (Myiopsitta monachus) and ring-necked parakeets (Psittacula krameri) are both widespread invasive species, but there has been little research into the genetic and social structure of these two species despite the potential links with invasion success. The aim of this study was to isolate novel microsatellite loci from the monk parakeet and characterise them in both monk and ring-necked parakeets in order to facilitate future investigations into their behaviour and population ecology. Sex-typing markers were also tested in both species. Of the 20 microsatellite loci assessed in 24 unrelated monk parakeets, 16 successfully amplified and were polymorphic displaying between 2 and 14 alleles (mean = 8.06). Expected heterozygosity ranged from 0.43 to 0.93 and observed heterozygosity ranged from 0.23 to 0.96. Nine of the 20 loci also successfully amplified and were polymorphic in the ring-necked parakeet, displaying between 2 and 10 alleles. Suitable markers to sex both species and a Z-linked microsatellite locus were identified. A multiplex marker set was validated for monk parakeets. These novel microsatellite loci will facilitate fine and broad-scale population genetic analyses of these two widespread invasive species.
Asunto(s)
Especies Introducidas , Repeticiones de Microsatélite/genética , Periquitos/genética , Análisis para Determinación del Sexo , Animales , Femenino , Sitios Genéticos , Masculino , Especificidad de la EspecieRESUMEN
Parasite-mediated competition has been reported to be one of the most harmful, although overlooked, impacts that alien species have on native ecosystems. Monk parakeets Myiopsitta monachus are successful invaders in Europe, where they have been introduced from South America. Colonial nests of these parrots may also host other species, e.g. the rock pigeon Columba livia forma domestica. In this work, we analysed the ectoparasite composition of monk parakeets in Barcelona (Spain) and we evaluated their potential role as parasite-mediated competitors, by comparing their parasitic load with that of coexisting rock pigeons. Only two arthropod species were observed on monk parakeets, whereas four species were detected on pigeons. Parakeets were rarely infested by pigeon parasites (prevalence = 0.66%), whereas parakeet mites were recorded more often on pigeons (prevalence = 10.00%). The number of total parasites per bird increased with increasing densities of monk parakeets, both for pigeons and for parakeets. Therefore, overcrowding of birds due to the increasing population of monk parakeets in Barcelona may affect the health status of native pigeons, suggesting a potential role for parasite mediated competition by introduced parakeets. Furthermore, spill-over of alien mites (Ornithonyssus bursa) by monk parakeets to rock pigeons should be monitoring as it may affect human health.
Asunto(s)
Enfermedades de las Aves/epidemiología , Aves/parasitología , Columbidae/parasitología , Especificidad del Huésped , Especies Introducidas , Infestaciones por Ácaros/epidemiología , Periquitos/parasitología , Animales , Enfermedades de las Aves/parasitología , Ciudades , Ecosistema , Infestaciones por Ácaros/parasitología , Ácaros/fisiología , Carga de Parásitos , EspañaRESUMEN
Epigenetic modifications can respond rapidly to environmental changes and can shape phenotypic variation in accordance with environmental stimuli. One of the most studied epigenetic marks is DNA methylation. In the present study, we used the methylation-sensitive amplified polymorphism (MSAP) technique to investigate the natural variation in DNA methylation within and among subspecies of the house sparrow, Passer domesticus We focused on five subspecies from the Middle East because they show great variation in many ecological traits and because this region is the probable origin for the house sparrow's commensal relationship with humans. We analysed house sparrows from Spain as an outgroup. The level of variation in DNA methylation was similar among the five house sparrow subspecies from the Middle East despite high phenotypic and environmental variation, but the non-commensal subspecies was differentiated from the other four (commensal) Middle Eastern subspecies. Further, the European subspecies was differentiated from all other subspecies in DNA methylation. Our results indicate that variation in DNA methylation does not strictly follow subspecies designations. We detected a correlation between methylation level and some morphological traits, such as standardized bill length, and we suggest that part of the high morphological variation in the native populations of the house sparrow is influenced by differentially methylated regions in specific loci throughout the genome. We also detected 10 differentially methylated loci among subspecies and three loci that differentiated between commensal or non-commensal status. Therefore, the MSAP technique detected larger scale differences among the European and non-commensal subspecies, but did not detect finer scale differences among the other Middle Eastern subspecies.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Polimorfismo Genético , Gorriones/genética , Adaptación Biológica , Animales , Femenino , Masculino , Medio Oriente , España , Especificidad de la EspecieRESUMEN
In humans, identity is partly encoded in a voice-print that is carried across multiple vocalizations. Other species also signal vocal identity in calls, such as shown in the contact call of parrots. However, it remains unclear to what extent other call types in parrots are individually distinct, and whether there is an analogous voice-print across calls. Here we test if an individual signature is present in other call types, how stable this signature is, and if parrots exhibit voice-prints across call types. We recorded 5599 vocalizations from 229 individually marked monk parakeets (Myiopsitta monachus) over a 2-year period in Barcelona, Spain. We examined five distinct call types, finding evidence for an individual signature in three. We further show that in the contact call, while birds are individually distinct, the calls are more variable than previously assumed, changing over short time scales (seconds to minutes). Finally, we provide evidence for voice-prints across multiple call types, with a discriminant function being able to predict caller identity across call types. This suggests that monk parakeets may be able to use vocal cues to recognize conspecifics, even across vocalization types and without necessarily needing active vocal signatures of identity.
RESUMEN
A recurrent behavioral trait model to study adaptation to urban environments is the flight initiation distance (FID), measured as the distance at which animals flee from an approaching threat. It has previously been shown that urban birds display shorter FID than their non-urban (rural) counterparts. However, discerning whether this is the result of habituation to human presence and frequentation, or of ecological factors related to the size of the city (considered as "systemic habituation"), has not yet been addressed. In this study, we analyzed House Sparrow (Passer domesticus) FIDs in a network of 26 small towns and villages within the same region in northeastern Spain. Our aim was to relate FID to human population density and settlement size. If the habituation to human presence hypothesis was supported, we should expect FIDs to decrease with the density of the human population across the human settlements, since this type of habituation is related to the rate of human exposure and this is proportional to human density. However, if the systemic habituation hypothesis was supported, FIDs should instead relate to the size of the human settlements, as the abundance of predators, similarly to other ecological variables, is often proportional to the size of towns. Results showed House Sparrows to be bolder in larger human settlements, but not necessarily the ones with a higher density of human population. This supports the idea that the fact that urban birds display shorter FIDs than their rural counterparts is the result of systemic ecological factors rather than the results of a simple habituation to humans.
Asunto(s)
Adaptación Fisiológica , Aves , Animales , Humanos , Ciudades , EspañaRESUMEN
INTRODUCTION: Hypersensitivity pneumonitis (HP) is usually caused by the inhalation of avian and fungal proteins. The present study assesses a cohort of Urban Pest Surveillance and Control Service (UPSCS) workers with high exposure to avian and fungal antigens, in order to identify their degree of sensitization and the potential risk of developing HP. METHODS: Workers were divided according to their work activity into Nest pruners (Group 1) and Others (Group 2). All individuals underwent a medical interview, pulmonary function tests and the determination of specific IgG antibodies. Antigenic proteins of pigeon sera were analysed using two-dimensional immunoblotting. Proteins of interest were sequenced by liquid-chromatography-mass spectrometry (LC-MS). RESULTS: 101 workers were recruited (76 men, average age: 42 yrs); (Group 1 = 41, Group 2 = 60). Up to 30% of the study population exhibited increased levels of IgGs to pigeon, small parrot and parrot, and up to 60% showed high levels of Aspergillus and Penicillium IgGs. In Group 1, specific parakeet and Mucor IgGs were higher (p = 0.044 and 0.003 respectively) while DLCO/VA% were lower (p = 0.008) than in Group 2. Two-dimensional immunoblotting showed protein bands of 20-30 KDa recognized by HP patients but not by workers. LC-MS analysis identified Ig Lambda chain and Apolipoprotein A-I as candidate proteins for distinguishing HP patients from exposed workers. CONCLUSIONS: Two pigeon proteins were identified that may play a role in the development of pathological differences between HP patients and exposed workers. DLCO/VA may have a predictive value in the development of HP disease.
RESUMEN
Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.
Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Temperatura , Estaciones del Año , ReproducciónRESUMEN
Identifying the molecular mechanisms involved in rapid adaptation to novel environments and determining their predictability are central questions in evolutionary biology and pressing issues due to rapid global changes. Complementary to genetic responses to selection, faster epigenetic variations such as modifications of DNA methylation may play a substantial role in rapid adaptation. In the context of rampant urbanization, joint examinations of genomic and epigenomic mechanisms are still lacking. Here, we investigated genomic (SNP) and epigenomic (CpG methylation) responses to urban life in a passerine bird, the Great tit (Parus major). To test whether urban evolution is predictable (i.e. parallel) or involves mostly nonparallel molecular processes among cities, we analysed both SNP and CpG methylation variations across three distinct pairs of city and forest Great tit populations in Europe. Our analyses reveal a polygenic response to urban life, with both many genes putatively under weak divergent selection and multiple differentially methylated regions (DMRs) between forest and city great tits. DMRs mainly overlapped transcription start sites and promotor regions, suggesting their importance in modulating gene expression. Both genomic and epigenomic outliers were found in genomic regions enriched for genes with biological functions related to the nervous system, immunity, or behavioural, hormonal and stress responses. Interestingly, comparisons across the three pairs of city-forest populations suggested little parallelism in both genetic and epigenetic responses. Our results confirm, at both the genetic and epigenetic levels, hypotheses of polygenic and largely nonparallel mechanisms of rapid adaptation in novel environments such as urbanized areas.
RESUMEN
The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.
Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Cambio Climático , Estaciones del Año , TemperaturaRESUMEN
Yellow, red or orange carotenoid-based colorations in male birds are often a signal to prospecting females about body condition, health status and ability to find food. However, this general 'ability to find food' has never been defined. Here we show that more brightly ornamented individuals may also be more efficient when foraging in novel situations. The results highlight the fact that evolution may have provided females tools to evaluate cognitive abilities of the males.
Asunto(s)
Aves/fisiología , Conducta Alimentaria , Solución de Problemas , Animales , Color , Femenino , MasculinoRESUMEN
BACKGROUND: Nicarbazin is an anti-coccidial product sometimes used as a contraceptive to reduce the size of feral pigeon populations. However, its effectiveness in reducing pigeon population size in cities has caused some controversy. Here, we evaluate its effectiveness in the city of Barcelona. RESULTS: In 2017, the Barcelona City Council set 23 feeding stations with nicarbazin and ten with placebo (untreated corn). Censuses were undertaken before and after one year of treatment, within a 200-m radius around each feeder. We also censused 28 circles of 200 m radius distributed randomly 200 m from the feeders and 28 circles > 500 m from the feeders, which acted as controls. Population size across the whole city was also evaluated pre- and post treatment. We found that feral pigeon density did not change after one year of treatment, either in the circles around feeding stations with nicarbazin or in the areas around control stations at 200 and > 500 m from the feeders. Population size in placebo circles rose after a year by 10%. A pigeon census for the whole of Barcelona showed a 10% increase. CONCLUSION: Overall, our results indicate that the nicarbazin treatment had no effect on feral pigeon population size, and we advise against its use as a pigeon control method, at least in large cities.
Asunto(s)
Columbidae , Nicarbazina , Animales , Ciudades , Densidad de PoblaciónRESUMEN
Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment. Yet, the genetic changes and genomic architecture underlying these adaptations are poorly understood. Here, we genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent rural site, to address this major knowledge gap in our understanding of wildlife urban adaptation. We find that a combination of polygenic allele frequency shifts and recurrent selective sweeps are associated with the adaptation of great tits to urban environments. While haplotypes under selection are rarely shared across urban populations, selective sweeps occur within the same genes, mostly linked to neural function and development. Collectively, we show that urban adaptation in a widespread songbird occurs through unique and shared selective sweeps in a core-set of behaviour-linked genes.
Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Passeriformes/fisiología , Selección Genética , Urbanización , Distribución Animal , Animales , Ciudades , Europa (Continente) , Frecuencia de los GenesRESUMEN
While most of the knowledge on invasive species focuses on their impacts, little is known about their potential positive effects on other species. Invasive ecosystem engineers can disrupt recipient environments; however, they may also facilitate access to novel resources for native species. The monk parakeet (Myiopsitta monachus) is a worldwide invader and the only parrot that builds its own communal nests, which can be used by other species. However, the ecological effects of these interspecific interactions are barely known. We compared the role of the monk parakeet as a nest-site facilitator in different rural and urban areas, both invaded and native, across three continents and eight breeding seasons. A total of 2690 nests from 42 tenant species, mostly cavity-nesting birds, were recorded in 26% of 2595 monk parakeet nests. Rural and invaded areas showed the highest abundance and richness of tenant species. Multispecies communal nests triggered interspecific aggression between the monk parakeet host and its tenants, but also a cooperative defense against predators. Despite the positive effects for native species, monk parakeets also facilitate nesting opportunities to other non-native species and may also transmit diseases to tenants, highlighting the complexity of biotic interactions in biological invasions.
RESUMEN
Zoological gardens are home to a large number of vertebrate species and as such are suitable sites for both mosquito breeding and maintenance. They are excellent places for entomological studies of mosquito phenology, diversity, and blood-feeding patterns, as well as for xenomonitoring. During 2016, we sampled mosquitoes in Barcelona Zoo and used molecular methods to determine their blood-feeding patterns and the prevalence and diversity of avian malaria parasites. We also estimated the flight distance of engorged mosquitoes in the area. Overall, 1,384 adult Culex pipiens s.l., Culiseta longiareolata, and Aedes albopictus were captured. Birds dominated the diet of Cx. pipiens s.l. (n = 87) and Cs. longiareolata (n = 6), while humans were the only blood-meal source of Ae. albopictus (n = 3). Mosquitoes had a mean flight distance of 95.67 m after feeding on blood (range 38.71-168.51 m). Blood parasites were detected in the abdomen of 13 engorged Cx. pipiens s.l., eight of which had fed on magpies. Four Plasmodium lineages and a single lineage of the malaria-like parasite Haemoproteus were identified. These results suggest that Cx. pipiens s.l. is involved in the local transmission of avian Plasmodium, which potentially affects the circulation of parasites between and within wildlife and enclosed animals. Vigilance regarding possible mosquito breeding sites in this zoo is thus recommended.
RESUMEN
Citril finches Carduelis c. citrinella and Corsican finches Carduelis c. corsicana represent two closely related forms, endemic to European mountains and some Mediterranean Islands. Their taxonomic status has recently been disputed based on the results from mitochondrial genes. We show that the use of different genetic markers may lead to different results in these two putative species. Using the mitochondrial ATP8+6 we found a clear difference between C. c. citrinella and C. c. corsicana (3.2%) suggesting a divergence time of 1.2MYR. In contrast, no clear difference was found using two nuclear genes. The mismatch between the different markers suggests that the separation of C. c. citrinella and C. c. corsicana is likely to be a rather recent event, involving bottlenecks, which have enhanced the divergence in the mtDNA. Our results call for caution when using mtDNA alone for assessing times of divergence and rates of evolution. We did not find any support for the view that C. c. corsicana is more related to Carduelis carduelis than C. c. citrinella as proposed by previous studies.
Asunto(s)
Evolución Molecular , Pinzones/genética , Genes Mitocondriales , Genética de Población , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Pinzones/clasificación , Marcadores Genéticos , Especiación Genética , Variación Genética , Repeticiones de Microsatélite , Filogenia , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Carotenoids may provide numerous health benefits and are also responsible for the integumentary coloration of many bird species. Despite their importance, many aspects of their metabolism are still poorly known, and even basic issues such as the anatomical sites of conversion remain controversial. Recent studies suggest that the transformation of carotenoid pigments takes place directly in the follicles during feather growth, even though the liver has been previously recognised as a storing organ for these pigments with a certain potential for conversion. In this context, we analysed the carotenoid profile of plasma, liver, skin and feathers of male Common Crossbills (Loxia curvirostra). Interestingly, the derivative feather pigment 3-hydroxy-echinenone was detected in the liver and in the bloodstream (i.e. the necessary vehicle to transport metabolites to colorful peripheral tissues). Our results demonstrate for the first time with empirical data that the liver may act as the main site for the synthesis of integumentary carotenoids. This finding contradicts previous assumptions and raises the question of possible inter-specific differences in the site of carotenoid conversion in birds.