Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202303631, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38059669

RESUMEN

Carbon dots (CDs) are an emerging class of carbon nanoparticles, which for their characteristics have found applications in many fields such as catalysis, materials and biomedicine. Within this context, the application of CDs as antibacterial agents has received much attention in very recent years, while their use as antifungal nanoparticles has been scarcely investigated. Here we report a systematic investigation of the surface functional groups of CDs to study their influence on these nanoparticles' against Candida albicans. Three classes of CDs have been synthesised and fully characterized. A thorough in vitro and in vivo biological screening against C. albicans was performed to test their antifungal, antiadhesion and antibiofilm formation activities. Moreover, the interaction with C. albicans cells was investigated by microscopic analysis. Our results evidence how the presence of a positively polarised surface results crucial for the internalization into COS-7 cells. Positively charged nanoparticles were also able to inhibit adhesion and biofilm formation, to interact with the cellular membrane of C. albicans, and to increase the survival of G. mellonella infected larvae after the injection with positive nanoparticles. The antifungal activity of CDs and their extremely low toxicity may represent a new strategy to combat infections sustained by C.albicans.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Antifúngicos/farmacología , Carbono , Biopelículas , Larva , Pruebas de Sensibilidad Microbiana
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508008

RESUMEN

Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)-based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.

3.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682687

RESUMEN

Amyloid-ß peptide (Aß) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aß42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aß42 concentration ratio (ρ) close to 0.1 a faster organization of Aß42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.


Asunto(s)
Péptidos beta-Amiloides , Hidrocortisona , Amiloide/química , Péptidos beta-Amiloides/química , Cinética , Fragmentos de Péptidos/química
4.
J Nanobiotechnology ; 19(1): 306, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620157

RESUMEN

BACKGROUND: There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. RESULTS: ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. CONCLUSIONS: ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies.


Asunto(s)
Clonación Molecular , Impedancia Eléctrica , Nanopartículas del Metal , Pruebas de Toxicidad , Óxido de Zinc , Células A549 , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Pulmón/citología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Microscopía Confocal , Microscopía Electrónica , Azul de Tripano , Óxido de Zinc/química , Óxido de Zinc/toxicidad
5.
Arch Toxicol ; 95(7): 2367-2383, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33948695

RESUMEN

Comparative laser and thermal treatments were carried out on PG36, a green phthalocyanine-based pigment, permitted in European countries where legislation on tattoo composition was issued. Prior to the treatments, PG36 was characterized by SEM imaging, EDX, IR and UV-Vis spectroscopies, revealing an excess of Si and C and O as compared to the pure halogenated Cu-phthalocyanine. Laser treatments were carried out with a Nd:YAG device applied to H2O and propan-2-ol dispersions. Pyrolysis and calcinations were carried out in air or under N2 flow. The outcome of the different procedures was analyzed by UV-Vis spectroscopy, GC-mass spectrometry, X-ray diffraction of the solid residues, SEM microscopy and dynamic light scattering. The comparative analysis indicated the production of different fragment compounds depending on the treatment, (pyrolysis or laser), and, to some extent, to the solvent of the dispersion, with pyrolysis generating a larger number of hazardous compounds. Hydrocarbons and cyclic siloxanes present as additives in PG36 were stable or degraded depending on the treatment. The morphology of the products is also treatment-dependent with nanoparticles < 20 nm and fibers being produced upon laser treatments only. Based on the experimental findings, the equivalence of laser and thermal treatments is evaluated.


Asunto(s)
Láseres de Estado Sólido , Tatuaje , Dispersión Dinámica de Luz , Europa (Continente) , Indoles
6.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34640679

RESUMEN

Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water-THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1-100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water samples.


Asunto(s)
Fulerenos , Carbono , Cromo/toxicidad , Colorimetría , Humanos , Iones , Agua
7.
Arch Toxicol ; 94(7): 2359-2375, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472170

RESUMEN

Since tattoos became overwhelmingly fashionable worldwide, the demand for removal has proportionally increased, Nd:YAG Q-switch laser being the most commonly used tool for the purpose. In this framework we investigated the composition and products of laser treatment of green tattoo ink, the Green Concentrate from Eternal. The ink characterization has been carried out by IR, UV-Vis, EDX spectroscopies, and SEM imaging. It revealed the presence of the pigment PG7, rather than PG36 as reported on the bottle label, along with non-fully halogenated analogues. The morphology is an extended sheath with embedded grains. Subsequent laser treatments were performed on both dried and extracted inks, dispersed either in water or in propan-2-ol, chosen for their different polarities, as it is the case in the skin layers. The products were analyzed by gas chromatography-mass spectrometry, UV-Vis spectroscopy, SEM imaging, and dynamic light scattering. The outcome is a complex fragmentation pattern that depends both on the solvent and on the initial aggregation state. The fragment compounds are toxic at various degrees according to the Classification Labelling and Packaging regulations. Several shapes of aggregates are produced as an effect of both downsizing and re-aggregation, with potentially harmful aspect ratios.


Asunto(s)
Colorantes/efectos de la radiación , Colorantes/toxicidad , Indoles/efectos de la radiación , Indoles/toxicidad , Tinta , Terapia por Láser/efectos adversos , Láseres de Estado Sólido/efectos adversos , Tatuaje , Seguridad de Productos para el Consumidor , Dispersión Dinámica de Luz , Cromatografía de Gases y Espectrometría de Masas , Humanos , Terapia por Láser/instrumentación , Microscopía Electrónica de Rastreo , Medición de Riesgo , Espectrofotometría Ultravioleta
8.
Org Biomol Chem ; 17(5): 1113-1120, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30633293

RESUMEN

The self-aggregation of inherently chiral, (l)-proline functionalised Cu and Zn porphyrin derivatives has been investigated in different aqueous organic solvent media. The results indicate that the title species form self-assembled structures expressing supramolecular chirality by the amplification of the stereochemical information stored on the l-prolinate functionality. A substantial difference of the aggregation modes, and the chiroptical features of the final supramolecular species for the two investigated complexes, is clearly imputable to the metal ions, having a different coordination ability toward solvent molecules. Detailed kinetic investigation performed by combining different spectroscopy techniques allowed the definition of the reaction mechanisms involved in these processes. The results described are of importance, for example, for the achievement of stereoselective devices and sensors.

9.
Soft Matter ; 14(20): 4110-4125, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29664092

RESUMEN

We investigated the complexation of thermoresponsive anionic poly(N-isopropylacrylamide) (PNiPAM) microgels and cationic ε-polylysine (ε-PLL) chains. By combining electrophoresis, light scattering, transmission electron microscopy (TEM) and dielectric spectroscopy (DS) we studied the adsorption of ε-PLL onto microgel networks and its effect on the stability of suspensions. We show that the volume phase transition (VPT) of microgels triggers a large polyion adsorption. Two interesting phenomena with unique features occur: a temperature-dependent microgel overcharging and a complex reentrant condensation. The latter may occur at fixed polyion concentration, when temperature is raised above the VPT of microgels, or by increasing the number density of polycations at fixed temperature. TEM and DS measurements unambiguously show that short PLL chains adsorb onto microgels and act as electrostatic glue above the VPT. By performing thermal cycles, we further show that polyion-induced clustering is a quasi-reversible process: within the time of our experiments large clusters form above the VPT and partially re-dissolve as the mixtures are cooled down. Finally we give a proof that the observed phenomenology is purely electrostatic in nature: an increase of the ionic strength gives rise to polyion desorption from the microgel outer shell.

10.
Phys Chem Chem Phys ; 20(28): 18957-18968, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29972162

RESUMEN

Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition. Electrophoretic mobility measurements prove that the composition also dictates their superficial charge, which can be tuned from negative to positive by increasing the positively charged surfactant fraction in the mixtures. The study of the catanionic aggregates was conducted by means of microscopy and spectroscopy techniques and compared to the self-assembly behaviors of the individual building blocks. This study broadens the so far small array of bile salt derivative catanionic systems, confirming their distinctive behavior in the spectrum of catanionic mixtures.


Asunto(s)
Ácidos y Sales Biliares/química , Cationes/química , Nanotubos/química , Ensayo de Cambio de Movilidad Electroforética
11.
J Membr Biol ; 248(6): 991-1004, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26065901

RESUMEN

Prostasomes are vesicles secreted by prostate epithelial cells and are found in abundance in the semen. Here we characterized two different prostasome populations isolated from human seminal fluid. Prostasomes were isolated using differential centrifugation, while dynamic light scattering (DLS) was used to characterize their size and size distribution. Their protein content was analyzed using two-dimensional electrophoresis and mass spectrometry. DLS showed two distinct prostasome subpopulations in centrifuged seminal plasma, with an average hydrodynamic radius of 80 and 300 nm. The larger population was isolated after centrifugation at 20,000 × g (P20), while the smaller one was recovered at 100,000 × g (P100). The two fractions had a similar lipid composition, showing an elevated content of sphingomyelin and cholesterol. The P100 vesicles showed a significant over-expression of proteins involved in the endosomal sorting complexes required for transport (ESCRT) machinery such as Alix, TSG101, and syntenin-1. Some proteins possibly involved in prostate cancer were present only in one specific population (TMPRSS2 in P100 and VCP in P20). The different size and protein profile in the two subpopulations of prostasomes might support differential roles of the semen vesicles toward the target cells, and/or different secretion pathways from the organ of origin.


Asunto(s)
Células Epiteliales/metabolismo , Próstata/metabolismo , Proteoma , Proteómica , Adulto , Aminopeptidasas/metabolismo , Colesterol/metabolismo , Biología Computacional/métodos , Dispersión Dinámica de Luz , Humanos , Lípidos , Masculino , Fosfolípidos/metabolismo , Proteómica/métodos , Semen/metabolismo , Adulto Joven
12.
Biotechnol Lett ; 37(3): 557-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25388452

RESUMEN

Among polymeric polycations, chitosan has emerged as a powerful carrier for gene delivery. Only a few studies have focused on the stability of the chitosan/DNA complex under storage, although this is imperative for nanomedicinal applications. Here, we synthesized polyelectrolyte complexes at a charge ratio of 10 using 50 kDa chitosan and plasmid (p)DNA that encodes a GFP reporter. These preparations were stable up to 3 months at 4 °C and showed reproducible transfection efficiencies in vitro in HEK293 cells. In addition, we developed a methodology that increases the in vitro transfection efficiency of chitosan/pDNA complexes by 150% with respect to standard procedures. Notably, intracellular pDNA release and transfected cells peaked 5 days following transection of mitotically active cells. These new developments in formulation technology enhance the potential for polymeric nanoparticle-mediated gene therapy.


Asunto(s)
Quitosano/metabolismo , ADN/metabolismo , Técnicas de Transferencia de Gen , Plásmidos , Transfección/métodos , Línea Celular , Estabilidad de Medicamentos , Células Epiteliales/metabolismo , Humanos , Reproducibilidad de los Resultados , Temperatura , Factores de Tiempo , Transformación Genética
13.
Angew Chem Int Ed Engl ; 54(24): 7018-21, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25925079

RESUMEN

An approach for tailoring self-assembled tubular structures is described. By controlling the relative composition of a two-component surfactant mixture comprising the natural bile salt lithocholate and its bolamphiphilic derivative, it was possible to finely tune the nanotube cross-section of the mixed tubular aggregates that self-associated spontaneously in aqueous solution at pH 12. The diameter was found to vary up to 50% when the stoichiometric ratio of the two bile salts was changed. The tuning of supramolecular nanochannels with such remarkable precision is of significant interest for technological applications of these materials.


Asunto(s)
Ácidos y Sales Biliares/química , Nanotubos/química , Tensoactivos/química , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Biochim Biophys Acta ; 1828(2): 382-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23051652

RESUMEN

The interaction of neutral and anionic phospholipid liposomes, used as cell models, with cationic liposomes formulated with 1,2-dimyristoyl-sn-glicero-3-phosphocholine and stereomeric cationic gemini surfactants was investigated by differential scanning calorimetry, fluorescence experiments and dynamic laser light scattering. This study was aimed at rationalizing the different biological features shown by liposomes based on different gemini stereoisomers observed in previous investigations. In fact, to correlate the observed biological activity of liposomes with the molecular structure of their components is critical for a rational and systematic approach to the design of new carriers for drug delivery. The obtained results show that the different stereochemistry of the gemini surfactant controls the interaction and the extent of fusion with different cell models.


Asunto(s)
Membrana Celular/metabolismo , Liposomas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Transporte Biológico , Rastreo Diferencial de Calorimetría/métodos , Cationes , Dimiristoilfosfatidilcolina/química , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Luz , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Modelos Químicos , Fosfatidilgliceroles/química , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos , Propiedades de Superficie , Tensoactivos/química , Temperatura
15.
Langmuir ; 30(22): 6358-66, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24827467

RESUMEN

The introduction of a mannose residue on carbon 3 of lithocholic acid gives rise to an asymmetric and rigid bolaamphiphilic molecule, which self-assembles in water to form elongated tubular aggregates with an outer diameter of about 20 nm. These tubular structures display a temporal evolution, where the average tube diameter decreases with time, which can be followed by time-resolved small-angle X-ray scattering experiments. Cryogenic transmission electron microscopy images collected as a function of time show that at short times after preparation tubular scrolls are formed via the rolling of layers, after which a complex transformation of the scrolls into single-walled tubules takes place. At long time scales, a further evolution occurs where the tubules both elongate and become narrower. The observed self-assembly confirms the tendency of bile acids and their derivatives to form supramolecular aggregates with an ordered packing of the constituent molecules. It also demonstrates that scrolls can be formed as intermediate structures in the self-assembly process of monodisperse single-walled tubules.

16.
Soft Matter ; 10(12): 1944-52, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24651999

RESUMEN

We have recently employed L-amino acids in the lipase-catalyzed biofabrication of a class of self-assembling Fmoc-peptides that form 3-dimensional nanofiber scaffolds. Here we report that using d-amino acids, the homochiral self-assembling peptide Fmoc-D-Phe3 (Fmoc-F*F*F*) also forms a 3-dimensional nanofiber scaffold that is substantially distinguishable from its L-peptide and heterochiral peptide (F*FF and FF*F*) counterparts on the basis of their physico-chemical properties. Such chiral peptides self-assemble into ordered nanofibers with well defined fibrillar motifs. Circular dichroism and atomic force microscopy have been employed to study in depth such fibrillar peptide structures. Dexamethasone release kinetics from PLGA and CS-PLGA nanoparticles entrapped within the peptidic hydrogel matrix encourage its use for applications in drug controlled release.


Asunto(s)
Materiales Biocompatibles/química , Nanofibras/química , Péptidos/química , Aminoácidos/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Péptidos/farmacología
17.
Analyst ; 138(17): 5019-24, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23831561

RESUMEN

In this work we show the functionalization of the interior of microfluidic glass chips with poly(2-hydroxyethyl methacrylate) polymer brushes as anchors for co-immobilization of the enzymes glucose-oxidase and horseradish peroxidase. The formation of the brush layer and subsequent immobilization of these enzymes have been characterized on flat surfaces by atomic force microscopy and Fourier transform infrared spectroscopy, and studied inside glass chips by field emission scanning microscopy. Enzyme-functionalized glass chips have been applied for performing a multi-enzymatic cascade reaction for the fast (20 s) determination of glucose in human blood samples and the result is in excellent agreement with values obtained from the conventional hospital laboratory. The limit of detection of this bi-enzymatic method is 60 µM. With the advantages of high selectivity and reproducibility, this functionalization method can be used for improving the efficiency of glucose sensors.


Asunto(s)
Técnicas Biosensibles/métodos , Vidrio/química , Glucosa Oxidasa/metabolismo , Glucosa/análisis , Glucosa/química , Peroxidasa de Rábano Silvestre/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/química , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Silicio/química , Espectrofotometría Ultravioleta , Propiedades de Superficie
18.
Colloids Surf B Biointerfaces ; 222: 113137, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640540

RESUMEN

Laser Transmission Spectroscopy (LTS) is an experimental technique able to determine the particle number concentration and the size of colloidal suspensions by a single measurement of the transmittance of a laser beam through the suspension of particles as a function of the wavelength. In this protocol, we show that LTS represents a unique and powerful tool to investigate suspensions of liposomes, where the precise quantification of the number concentration is particularly relevant for the complete definition of the colloidal properties of the suspension. We study a model formulation of Soy-PC:Chol liposomes and we validate LTS results by comparison with High-Performance Liquid Chromatography determination of lipid mass. Then LTS protocols is applied to state-of-art liposomal nanocarrier suspensions. We explain details of data analysis to obtain the particle number concentration by using the Lambert-Beer law and by calculating the extinction cross section, within the framework of Mie theory for spherical vesicles. We also determine the liposome radius and compare it with the hydrodynamic radius measured by Dynamic Light Scattering. As future perspective, we aim to extend LTS analysis to other nanostructures with different geometries and to contribute to the development of new quantitative strategies for the accurate characterization of nanocarriers and other nanoparticles.


Asunto(s)
Rayos Láser , Liposomas , Suspensiones , Análisis Espectral , Dispersión Dinámica de Luz , Tamaño de la Partícula
19.
Biomolecules ; 13(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38136664

RESUMEN

Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, trans-resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and eradicating biofilm-associated infections but its mechanism of action is poorly understood. In addition, RSV suffers from low bioavailability and chemical instability in the biological media that make its encapsulation in delivery systems necessary. In this work, the anti-biofilm activity of free RSV was investigated on Staphylococcus aureus and, to highlight the possible mechanism of action, we studied the anti-adherence activity and also the cell wall damage on a MRSA strain. Free RSV activity was compared to that of RSV loaded in liposomes, specifically neutral liposomes (L = DOPC/Cholesterol) and cationic liposomes (LG = DOPC/Chol/GLT1) characterized by a galactosylated amphiphile (GLT1) that promotes the interaction with bacteria. The results indicate that RSV loaded in LG has anti-adherence and anti-biofilm activity higher than free RSV. On the other side, free RSV has a higher bacterial-growth-inhibiting effect than encapsulated RSV and it can damage cell walls by creating pores; however, this effect can not prevent bacteria from growing again. This RSV ability may underlie its bacteriostatic activity.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Liposomas/química , Resveratrol/farmacología , Resveratrol/uso terapéutico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Pared Celular , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
20.
ACS Biomater Sci Eng ; 9(6): 3262-3272, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37150953

RESUMEN

Despite the significant contribution of titanium and its alloys for hard tissue regenerative medicine, some major issues remain to be solved. Implants' long-term stability is threatened by poor osseointegration. Moreover, bacterial adhesion and excessive inflammatory response are also to be considered in the design of a device intended to be integrated into the human body. Here, a cerium mixed oxide (CeOx) coating was realized on pristine and nanotubular-structured Ti and Ti6Al4V surfaces using a simple layer-by-layer drop-casting technique. Bioactivity, resistance in simulated inflammatory conditions, and bactericidal capacity were evaluated as a function of morphological surface characteristics combined with the cerium quantity deposited. The results obtained suggest that the presence of CeOx on the surfaces with nanotubes enhanced osseointegration, while on the non-nanostructured surfaces, this coating improved resistance under oxidative stress and provided excellent antibacterial properties.


Asunto(s)
Cerio , Titanio , Humanos , Titanio/farmacología , Materiales Biocompatibles Revestidos/farmacología , Aleaciones/farmacología , Antibacterianos/farmacología , Cerio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA