Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biochem Biophys Res Commun ; 635: 136-143, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36274363

RESUMEN

Enhancer of zeste homolog 2 (EZH2), with EED and SUZ12, forms the polycomb repressive complex 2 (PRC2), which catalyzes histone H3 lysine 27 (H3K27) methylation. Canonically, EZH2 is well known to repress transcription by mediating H3K27 tri-methylation (H3K27me3) at target gene promoters. In this study, we report that EZH2 non-canonically regulates transcription of SET/TAF-Iß, known as a subunit of inhibitor of acetyltransferases (INHAT) complex and as a proto-oncogene. Importantly, transcriptional regulation of SET/TAF-Iß by EZH2 was independent of PRC2 and its methyltransferase activity. Moreover, EZH2 and SET/TAF-Iß levels were positively correlated, and both genes were highly expressed in various cancers including colon cancer as indicated by the analysis of TCGA database. Taken together, our study suggests the non-canonical role of EZH2 as a transcriptional activator of SET/TAF-Iß independent of methyltransferase function in colon cancer.


Asunto(s)
Neoplasias del Colon , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Acetiltransferasas , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regulación de la Expresión Génica
2.
Biochem Biophys Res Commun ; 561: 120-127, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34023776

RESUMEN

Epigenetic dysregulation has been strongly implicated in carcinogenesis and is one of the mechanisms that contribute to the development of lung cancer. Using genome-wide CRISPR/Cas9 library screening, we showed SET domain-containing protein 1A (SETD1A) is an essential epigenetic modifier of the proliferation of NSCLC H1299 cells. Depletion of SETD1A strikingly inhibited the proliferation of NSCLC cells. IHC staining and bioinformatics showed that SETD1A is upregulated in lung cancer. Kaplan-Meier survival analysis indicated that high expression of SETD1A is associated with poor prognosis of patients with NSCLC. We revealed that loss of SETD1A inhibits DNA replication and induces replication stress accompanied by impaired fork progression. In addition, transcription of CDC7 and TOP1, which are involved in replication origin activation and fork progression, respectively, was significantly reduced by knockdown of SETD1A. Taken together, these findings demonstrated SETD1A is a critical epigenetic modifier of NSCLC cell proliferation by promoting the transcription of a subset of DNA replication-associated genes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Biología Computacional/métodos , Replicación del ADN , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S
3.
Nucleic Acids Res ; 47(4): 1692-1705, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30535125

RESUMEN

Posttranslational modifications of the Forkhead family transcription factor, FOXO1, have been known to have important regulatory implications in its diverse activities. Several types of modifications of FOXO1, including acetylation, phosphorylation, and ubiquitination, have been reported. However, lysine methylation of FOXO1 has not yet been identified. Here, we reported that FOXO1 is methylated by G9a at K273 residue in vitro and in vivo. Methylation of FOXO1 by G9a increased interaction between FOXO1 and a specific E3 ligase, SKP2, and decreased FOXO1 protein stability. In addition, G9a expression was increased by insulin and resulted in insulin-mediated FOXO1 degradation by K273 methylation. Tissue array analysis indicated that G9a was overexpressed and FOXO1 levels decreased in human colon cancer. Cell proliferation assays revealed that G9a-mediated FOXO1 methylation increased colon cancer cell proliferation. Fluorescence-activated cell sorting (FACS) analysis indicated that apoptosis rates were higher in the presence of FOXO1 than in FOXO1 knock-out cells. Furthermore, we found that G9a protein levels were elevated and FOXO1 protein levels were decreased in human colon cancer patients tissue samples. Here, we report that G9a specific inhibitor, BIX-01294, can regulate cell proliferation and apoptosis by inhibiting G9a-mediated FOXO1 methylation.


Asunto(s)
Neoplasias del Colon/genética , Proteína Forkhead Box O1/genética , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Apoptosis/genética , Azepinas/farmacología , Sistemas CRISPR-Cas/genética , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Metilación de ADN/genética , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HCT116 , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Masculino , Quinazolinas/farmacología , Análisis de Matrices Tisulares , Ubiquitinación/genética
4.
Nucleic Acids Res ; 47(1): 184-196, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30357346

RESUMEN

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Roturas del ADN de Doble Cadena , Metilación de ADN/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Daño del ADN/genética , Reparación del ADN/genética , Heterocromatina/genética , Humanos , Fosforilación , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica/genética , Fase S/genética , Ubiquitina-Proteína Ligasas
5.
Mol Cell ; 48(4): 572-86, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23063525

RESUMEN

Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Células MCF-7 , Metilación , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas , Especificidad por Sustrato
6.
Biochem Biophys Res Commun ; 508(2): 576-582, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30514438

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most lethal cancer worldwide. Although gene mutations associated with HCC development have been intensively studied, how epigenetic factors specifically modulate the functional properties of HCC by regulating target gene expression is unclear. Here we demonstrated the overexpression of KDM3B in liver tissue of HCC patients using public RNA-seq data. Ablation of KDM3B by CRISPR/Cas9 retarded the cell cycle and proliferation of hepatocarcinoma HepG2 cells. Approximately 30% of KDM3B knockout cells exhibited mitotic spindle multipolarity as a chromosome instability (CIN) phenotype. RNA-seq analysis of KDM3B knockout revealed significantly down-regulated expression of cell cycle related genes, especially cell proliferation factor CDC123. Furthermore, the expression level of Cyclin D1 was reduced in KDM3B knockout by proteosomal degradation without any change in the expression of CCND1, which encodes Cyclin D1. The results implicate KDM3B as a crucial epigenetic factor in cell cycle regulation that manipulates chromatin dynamics and transcription in HCC, and identifies a potential gene therapy target for effective treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Genes cdc/genética , Histona Demetilasas con Dominio de Jumonji/fisiología , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Histona Demetilasas con Dominio de Jumonji/análisis , Histona Demetilasas con Dominio de Jumonji/genética , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Transcripción Genética
7.
FASEB J ; 32(10): 5737-5750, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29763382

RESUMEN

The methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominent in actively transcribed regions of the genome; however, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B, also known as FBXL10 and a member of the Jumonji C family of proteins known for its histone H3K36 demethylase activity, is a di- and trimethyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, which indicates that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase sirtuin-1 (SIRT1) from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.-Kang, J.-Y., Kim, J.-Y., Kim, K.-B., Park, J. W., Cho, H., Hahm, J. Y., Chae, Y.-C., Kim, D., Kook, H., Rhee, S., Ha, N.-C., Seo, S.-B. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing.


Asunto(s)
Cromatina/metabolismo , Proteínas F-Box/metabolismo , Silenciador del Gen , Proteínas de Homeodominio/biosíntesis , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/biosíntesis , Sirtuina 1/metabolismo , Transcripción Genética , Cromatina/genética , Proteínas F-Box/genética , Proteínas de Homeodominio/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células K562 , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Sirtuina 1/genética
8.
Mol Cell ; 37(2): 183-95, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122401

RESUMEN

Wnt family members play diverse roles in development and disease. Noncanonical Wnt ligands can inhibit canonical Wnt signaling depending on the cellular context; however, the underlying mechanism of this antagonism remains poorly understood. Here we identify a specific mechanism of orphan nuclear receptor RORalpha-mediated inhibition of canonical Wnt signaling in colon cancer. Wnt5a/PKCalpha-dependent phosphorylation on serine residue 35 of RORalpha is crucial to link RORalpha to Wnt/beta-catenin signaling, which exerts inhibitory function of the expression of Wnt/beta-catenin target genes. Intriguingly, there is a significant correlation of reduction of RORalpha phosphorylation in colorectal tumor cases compared to their normal counterpart, providing the clinical relevance of the findings. Our data provide evidence for a role of RORalpha, functioning at the crossroads between the canonical and the noncanonical Wnt signaling pathways, in mediating transrepression of the Wnt/beta-catenin target genes, thereby providing new approaches for the development of therapeutic agents for human cancers.


Asunto(s)
Carcinoma/metabolismo , Neoplasias del Colon/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Proteína Quinasa C-alfa/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fosforilación
9.
Mol Cell ; 39(1): 71-85, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603076

RESUMEN

Lysine methylation within histones is crucial for transcriptional regulation and thus links chromatin states to biological outcomes. Although recent studies have extended lysine methylation to nonhistone proteins, underlying molecular mechanisms such as the upstream signaling cascade that induces lysine methylation and downstream target genes modulated by this modification have not been elucidated. Here, we show that Reptin, a chromatin-remodeling factor, is methylated at lysine 67 in hypoxic conditions by the methyltransferase G9a. Methylated Reptin binds to the promoters of a subset of hypoxia-responsive genes and negatively regulates transcription of these genes to modulate cellular responses to hypoxia.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Hipoxia de la Célula/genética , Línea Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisina/metabolismo , Metilación , Ratones , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nucleic Acids Res ; 43(7): 3509-23, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765655

RESUMEN

Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Metilasas de Modificación del ADN/metabolismo , Regulación de la Expresión Génica , Leucemia/patología , Transcripción Genética , Línea Celular , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Leucemia/genética , Ubiquitina-Proteína Ligasas
11.
Biochem Biophys Res Commun ; 469(1): 22-28, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26607113

RESUMEN

Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.


Asunto(s)
Aurora Quinasa A/genética , Código de Histonas/genética , Histonas/genética , Neoplasias Experimentales/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Células HL-60 , Humanos , Fosforilación , Transcripción Genética/genética
12.
Cell Mol Life Sci ; 71(14): 2731-45, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24305947

RESUMEN

DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iß, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iß interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iß and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iß inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iß expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iß interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iß dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.


Asunto(s)
Antígenos Nucleares/fisiología , Daño del ADN , Reparación del ADN por Unión de Extremidades/fisiología , Proteínas de Unión al ADN/fisiología , Chaperonas de Histonas/fisiología , Factores de Transcripción/fisiología , Acetilación , Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Autoantígeno Ku , Modelos Genéticos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo
13.
Biosci Biotechnol Biochem ; 79(4): 532-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25560918

RESUMEN

TIP60 can act as a transcriptional activator or a repressor depending on the cellular context. However, little is known about the role of the chromodomain in the functional regulation of TIP60. In this study, we found that TIP60 interacted with H3K4me3 in response to TNF-α signaling. TIP60 bound to H3K4me3 at the promoters of the NF-κB target genes IL6 and IL8. Unlike the wild-type protein, a TIP60 chromodomain mutant did not localize to chromatin regions. Because TIP60 binds to histones with specific modifications and transcriptional regulators, we used a histone peptide assay to identify histone codes recognized by TIP60. TIP60 preferentially interacted with methylated or acetylated histone H3 and H4 peptides. Phosphorylation near a lysine residue significantly reduced the affinity of TIP60 for the modified histone peptides. Our findings suggest that TIP60 acts as a functional link between the histone code and transcriptional regulators.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética , Código Genético , Histona Acetiltransferasas/genética , Transcripción Genética , Cromatina/química , Células Hep G2 , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lisina Acetiltransferasa 5 , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Análisis por Matrices de Proteínas , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Transducción de Señal , Activación Transcripcional , Factor de Necrosis Tumoral alfa/farmacología
15.
Nucleic Acids Res ; 40(1): 75-87, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911363

RESUMEN

The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iß inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iß interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iß blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iß induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iß.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Apoptosis , Línea Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Estrés Fisiológico , Activación Transcripcional , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Rayos Ultravioleta
16.
Genes Genomics ; 46(7): 871-879, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805168

RESUMEN

BACKGROUND: Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE: We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS: RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS: In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION: TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas , Lisina Acetiltransferasa 5 , Humanos , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proliferación Celular/genética , Células HCT116 , Apoptosis/genética , Regiones Promotoras Genéticas
17.
iScience ; 27(8): 110380, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39165843

RESUMEN

Histone H3K9 methylated heterochromatin silences repetitive non-coding sequences and lineage-specific genes during development, but how tissue-specific genes escape from heterochromatin in differentiated cells is unclear. Here, we examine age-dependent transcriptomic profiling of terminally differentiated mouse retina to identify epigenetic regulators involved in heterochromatin reorganization. The single-cell RNA sequencing analysis reveals a gradual downregulation of Kdm3b in cone photoreceptors during aging. Disruption of Kdm3b (Kdm3b +/- ) of 12-month-old mouse retina leads to the decreasing number of cones via apoptosis, and it changes the morphology of cone ribbon synapses. Integration of the transcriptome with epigenomic analysis in Kdm3b +/- retinas demonstrates gains of heterochromatin features in synapse assembly and vesicle transport genes that are downregulated via the accumulation of H3K9me1/2. Contrarily, losses of heterochromatin in apoptotic genes exacerbated retinal neurodegeneration. We propose that the KDM3B-centered epigenomic network is crucial for balancing of cone photoreceptor homeostasis via the modulation of gene set-specific heterochromatin features during aging.

18.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119659, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216089

RESUMEN

The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Quinasas Activadas por AMP/genética , Células HeLa , Factor 2 Relacionado con NF-E2/genética , Autofagia , Serina-Treonina Quinasas TOR/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
19.
Sci Rep ; 13(1): 13132, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573395

RESUMEN

DNA methylation is an epigenetic modification that regulates gene expression and plays an essential role in hematopoiesis. UHRF1 and DNMT1 are both crucial for regulating genome-wide maintenance of DNA methylation. Specifically, it is well known that hypermethylation is crucial characteristic of acute myeloid leukemia (AML). However, the mechanism underlying how DNA methylation regulates the differentiation of AML cells, including THP-1 is not fully elucidated. In this study, we report that UHRF1 or DNMT1 depletion enhances the phorbol-12-myristate-13-acetate (PMA)-induced differentiation of THP-1 cells. Transcriptome analysis and genome-wide methylation array results showed that depleting UHRF1 or DNMT1 induced changes that made THP-1 cells highly sensitive to PMA. Furthermore, knockdown of UHRF1 or DNMT1 impeded solid tumor formation in xenograft mouse model. These findings suggest that UHRF1 and DNMT1 play a pivotal role in regulating differentiation and proliferation of THP-1 cells and targeting these proteins may improve the efficiency of differentiation therapy in AML patients.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Humanos , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo , Células THP-1 , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Diferenciación Celular/genética , Hematopoyesis , Macrófagos/metabolismo
20.
NAR Cancer ; 5(3): zcad050, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37746636

RESUMEN

SET/TAF-Iß, a subunit of the inhibitor of acetyltransferases (INHAT) complex, exhibits transcriptional repression activity by inhibiting histone acetylation. We find that SET/TAF-Iß regulates mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), which is involved in polycomb-mediated transcriptional repression, in HCT116 cells. In this report, we demonstrate that SET/TAF-Iß acts as an E2 ubiquitin-conjugating enzyme for PRC1-independent H2AK119ub. Furthermore, we identify that MIB1 is the E3 ligase partner for SET/TAF-Iß using LC-MS/MS and in vitro ubiquitination assays. Transcriptome analysis reveals that SET/TAF-Iß and MIB1 regulate the expression of genes related to DNA replication and cell cycle progression in HCT116 cells, and knockdown of either protein reduces proliferation of HCT116 cells by impeding cell cycle progression. Together, our study reveals a novel PRC1-independent epigenetic regulatory mechanism for H2AK119ub by SET/TAF-Iß and MIB1 in colon cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA