Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786465

RESUMEN

Every year, almost 4 million patients received medical care for knee osteoarthritis. Osteoarthritis involves progressive deterioration or degenerative changes in the cartilage, leading to inflammation and pain as the bones and ligaments are affected. To enhance treatment and surgical outcomes, various studies analyzing the biomechanics of the human skeletal system by fabricating simulated bones, particularly those reflecting the characteristics of patients with knee osteoarthritis, are underway. In this study, we fabricated replicated bones that mirror the bone characteristics of patients with knee osteoarthritis and developed a skeletal model that mimics the actual movement of the knee. To create patient-specific replicated bones, models were extracted from computerized tomography (CT) scans of knee osteoarthritis patients. Utilizing 3D printing technology, we replicated the femur and tibia, which bear the weight of the body and support movement, and manufactured cartilage capable of absorbing and dispersing the impact of knee joint loads using flexible polymers. Furthermore, to implement knee movement in the skeletal model, we developed artificial muscles based on shape memory alloys (SMAs) and used them to mimic the rolling, sliding, and spinning motions of knee flexion. The knee movement was investigated by changing the SMA spring's position, the number of coils, and the applied voltage. Additionally, we developed a knee-joint-mimicking system to analyze the movement of the femur. The proposed artificial-skeletal-model-based knee-joint-mimicking system appears to be applicable for analyzing skeletal models of knee patients and developing surgical simulation equipment for artificial joint replacement surgery.

2.
Biomimetics (Basel) ; 9(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534851

RESUMEN

Knee osteoarthritis (OA), also known as degenerative arthritis, is a disease characterized by irreversible changes in the cartilage and bones comprising the joints, resulting in pain, impaired function, and deformity. Furthermore, independent of natural aging, the rate of change in joint cartilage has increased in recent years, which is mainly attributed to environmental factors. The rising incidence of knee-related disorders emphasizes the importance of analyzing the morphology and kinematics of knee structure. This study introduces a knee measurement system designed to replicate the motions of knee using 3D-printing technology, providing insights into knee mechanics with OA level. The research explores the stages of OA using the Kellgren-Lawrence (KL) grade scale, highlighting the variations in the force applied to the knee bone according to movement. The developed knee-simulation system, utilizing the four-bar-link theory, presents a novel approach to studying OA levels 0 to 4. As OA progresses, the cartilage deteriorates, affecting the movement of OA. The OA-based knee measurement system that incorporates soft tissues and skeletons can assist in developing a personalized diagnostic approach for knee disease. This will also help to enhance surgical effectiveness by facilitating the creation of personalized prosthetic joints for individual patients and offering a customized surgical simulation.

3.
Acupunct Med ; 39(4): 351-357, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32864988

RESUMEN

BACKGROUND: Moxibustion treatment involves a combination of thermal and chemical stimulation applied by the combustion of moxa wool. The quality of moxa wool is considered to be an important factor in moxibustion treatment traditionally and clinically. However, despite its importance, quantitative and objective methods for determining moxa wool quality are lacking. METHODS: Moxa wool and commercial indirect moxibustion (CIM) device specimens were randomly collected, dried and strained through sieves of various sizes for 10 h. After sieving, the residues remaining on each sieve were collected. The collected samples were weighed and microscopically observed. RESULTS: In this study, we observed that fibres mainly remained on sieves sized 425 µm, and particles were smaller than 300 µm. The residues between 425 and 300 µm varied between the products. In addition, moxa wool for direct moxibustion (DMW) exhibited significantly more fibres than moxa wool for indirect moxibustion (IMW). Most of the CIM devices using moxa wool had a quality similar to IMW, except for one CIM brand using moxa wool that contained three times more waste particles than IMW. CONCLUSION: Based on the results of this study, we conclude that the sieving method is useful for testing the quality of moxa wool even after the CIM manufacturing process. The sieve sizes of 425 and 300 µm could be used as a yardstick to determine the quality of moxa wool. Although this approach requires larger scale validation against existing standard methodologies, we believe it has great potential to be used to improve and safeguard the quality of moxa wool contained in commercial moxibustion devices.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Contaminación de Equipos/estadística & datos numéricos , Moxibustión/instrumentación , Contaminación de Medicamentos/estadística & datos numéricos , Humanos
4.
Front Plant Sci ; 11: 609847, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584753

RESUMEN

Mosses number about 13,000 species and are an important resource for the study of the plant evolution that occurred during terrestrial colonization by plants. Recently, the physiological and metabolic characteristics that distinguish mosses from terrestrial plants have received attention. In the Arctic, in particular, mosses developed their own distinct physiological features to adapt to the harsh environment. However, little is known about the molecular mechanisms by which Arctic mosses survive in extreme environments due to the lack of basic knowledge and tools such as genome sequences and genetic transfection methods. In this study, we report the axenic cultivation and transfection of Arctic Bryum sp. KMR5045, as a model for bioengineering of Arctic mosses. We also found that the inherent low-temperature tolerance of KMR5045 permitted it to maintain slow growth even at 2°C, while the model moss species Physcomitrium patens failed to grow at all, implying that KMR5045 is suitable for studies of cold-tolerance mechanisms. To achieve genetic transfection of KMR5045, some steps of the existing protocol for P. patens were modified. First, protoplasts were isolated using 1% driselase solution. Second, the appropriate antibiotic was identified and its concentration was optimized for the selection of transfectants. Third, the cell regeneration period before transfer to selection medium was extended to 9 days. As a result, KMR5045 transfectants were successfully obtained and confirmed transfection by detection of intracellular Citrine fluorescence derived from expression of a pAct5:Citrine transgene construct. This is the first report regarding the establishment of a genetic transfection method for an Arctic moss species belonging to the Bryaceae. The results of this study will contribute to understanding the function of genes involved in environmental adaptation and to application for production of useful metabolites derived from stress-tolerant mosses.

5.
Mitochondrial DNA B Resour ; 5(3): 3719-3720, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33367074

RESUMEN

Citrus sunki (Jinkyool) is a medicinal landrace citrus belonging to the Rutaceae family. We determined the complete chloroplast genome (160,699 bp) of C. sunki CRS0085 in Jeju Island, Korea. The genome is composed of four distinct parts; a large single copy of 87,918 bp, a small single copy of 21,355 bp, and a pair of inverted repeat regions of 25,713 bp. A total of 134 genes including 89 protein-coding genes, 37 tRNA genes, and eight rRNA genes were identified. The phylogenetic tree showed that C. sunki CRS0085 has the closest relationship with C. reticulata within genus Citrus.

6.
Brain Res Bull ; 162: 237-244, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593737

RESUMEN

Docetaxel, a chemotherapeutic agent used to treat breast cancer, produces a robust painful neuropathy that is aggravated by mechanical and thermal stimuli. This study was undertaken to investigate the analgesic effects of electrical stimulation on docetaxel-induced neuropathic pain in mice and to identify associated changes in ultrasound vocalizations. Peripheral neuropathy was induced with intraperitoneally injected docetaxel (5 mg/kg) on 3 times every 2 days in male ICR mice. Electrical wrist stimulation was administered and pain behavior signs were evaluated by von Frey filaments and thermal stimulation on the hind paw. Ultrasound vocalizations were measured using ultrasound microphones, after electrical stimulation. After mice developed docetaxel-induced neuropathic pain behavior, an electrical stimulation temporarily attenuated mechanical allodynia and thermal hyperalgesia. In formalin and NMDA test, pain-induced mice showed increases in 10-30 kHz ultrasound vocalizations, but not in 30-50 and 50-80 kHz vocalizations. Treatment with docetaxel selectively increased 10-30 kHz ultrasound vocalizations, whereas electrical stimulation caused a meaningful decrease. Moreover, electrical stimulation suppressed the docetaxel-enhanced phosphorylation of the NMDA receptor NR2B subunit in the spinal dorsal horn. These results of the analgesic effect of electrical stimulation in chemotherapy-induced neuropathy could potentially provide a new method to treat and manage peripheral neuropathy in patients with cancer.


Asunto(s)
Antineoplásicos/toxicidad , Terapia por Estimulación Eléctrica/métodos , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Vocalización Animal/fisiología , Animales , Docetaxel/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , Neuralgia/inducido químicamente , Neuralgia/terapia , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Médula Espinal/efectos de los fármacos , Vocalización Animal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA