Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Planta Med ; 90(1): 4-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903549

RESUMEN

Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.


Asunto(s)
Agastache , Gastritis , Aceites Volátiles , Animales , Hojas de la Planta , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico
2.
Molecules ; 23(9)2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177658

RESUMEN

Silicon dioxide nanoparticles (SiONPs), which are metal oxide nanoparticles, have been used in a wide variety of applications. In this study, acute pulmonary responses were examined after the intranasal instillation of SiONPs in mice primed with or without lipopolysaccharide (LPS, intranasal, 5 µg/mouse). The exposure to SiONPs increased the inflammatory cell counts and proinflammatory cytokines in the bronchoalveolar lavage fluid. SiONPs induced airway inflammation with increases in the phosphorylation of mitogen-activated protein kinases (MAPKs). The ratios of the inflammatory responses induced by the SiONPs were increased in the acute pulmonary disease model primed by LPS. Taken together, SiONPs exhibited toxicity to the respiratory system, which was associated with MAPK phosphorylation. In addition, the exposure to SiONPs exacerbated any existing inflammatory pulmonary diseases. These data showed the additive, as well as synergistic, interaction effects of SiONPs and LPS. We conclude that the exposure to SiONPs causes potential toxicity in humans, especially those with respiratory diseases.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Citocinas/metabolismo , Endotoxinas/efectos adversos , Dióxido de Silicio/efectos adversos , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Administración Intranasal , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Endotoxinas/administración & dosificación , Humanos , Instilación de Medicamentos , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nanopartículas , Fosforilación/efectos de los fármacos , Dióxido de Silicio/administración & dosificación
3.
Molecules ; 23(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400597

RESUMEN

Asthma, a heterogeneous disease of the airways, is common around the world, but little is known about the molecular mechanisms underlying the interactions between DNA methylation and gene expression in relation to this disease. The seeds of Descurainia sophia are traditionally used to treat coughs, asthma and edema, but their effects on asthma have not been investigated by multi-omics analysis. We undertook this study to assess the epigenetic effects of ethanol extract of D. sophia seeds (DSE) in an ovalbumin (OVA)-induced mouse model of asthma. We profiled genome-wide DNA methylation by Methyl-seq and characterized the transcriptome by RNA-seq in mouse lung tissue under three conditions: saline control, OVA-induced, and DSE-treated. In total, 1995 differentially methylated regions (DMRs) were identified in association with anti-asthmatic effects, most in promoter and coding regions. Among them, 25 DMRs were negatively correlated with the expression of the corresponding 18 genes. These genes were related to development of the lung, respiratory tube and respiratory system. Our findings provide insights into the anti-asthmatic effects of D. sophia seeds and reveal the epigenetic targets of anti-inflammatory processes in mice.


Asunto(s)
Antiasmáticos/farmacología , Brassicaceae/química , Epigénesis Genética/efectos de los fármacos , Extractos Vegetales/farmacología , Semillas/química , Animales , Antiasmáticos/química , Asma/tratamiento farmacológico , Asma/inmunología , Asma/patología , Biología Computacional/métodos , Metilación de ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ovalbúmina/efectos adversos , Ovalbúmina/inmunología , Extractos Vegetales/química , Transcriptoma
4.
BMC Complement Altern Med ; 17(1): 341, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662663

RESUMEN

BACKGROUND: Black ginseng (Panax ginseng C. A. Meyer), three to nine times-steamed and dried ginseng, has biological and pharmacological activities. In this study, the anti-diabetic effects of the black ginseng ethanol extract (GBG05-FF) in typical type 2 diabetic model db/db mice were investigated. METHODS: The effect of GBG05-FF in Type 2 diabetic mice was investigated by their blood analysis, biological mechanism analysis, and histological analysis. RESULTS: The mice group treated with GBG05-FF showed decreased fasting blood glucose and glucose tolerance compared to that of the nontreated GBG05-FF group. In the blood analysis, GBG05-FF decreased main plasma parameter such as HbA1c, triglyceride, and total-cholesterol levels related to diabetes and improved the expression of genes and protein related to glucose homeostasis and glucose uptake in the liver and muscle. The histological analysis result shows that GBG05-FF decreased lipid accumulation in the liver and damage in the muscle. Moreover, GBG05-FF increased the phosphorylation of the AMPK in the liver and upregulated the expression of GLUT2 in liver and GLUT4 in muscle. Therefore, the mechanisms of GBG05-FF may be related to suppressing gluconeogenesis by activating AMPK in the liver and affecting glucose uptake in surrounding tissues via the upregulation of GLUT2 and GLUT4 expression. CONCLUSION: These findings provided a new insight into the anti-diabetic clinical applications of GBG05-FF and it might play an important role in the development of promising functional foods and drugs from the viewpoint of the chemical composition and biological activities.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 4/genética , Hipoglucemiantes/administración & dosificación , Panax/química , Extractos Vegetales/administración & dosificación , Proteínas Quinasas Activadas por AMP/genética , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Foodborne Pathog Dis ; 12(6): 545-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26067230

RESUMEN

Morin, a plant-derived flavonol, is known to be an effective inhibitor of Gram-positive bacteria. In this study, we explored the combined effect of morin with ß-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen. The anti-MRSA activity of morin was investigated by the broth microdilution method, checkerboard dilution test, and time-kill curve assay. The expression of the resistant protein, penicillin-binding protein (PBP2a) encoded by mecA, was analyzed by the Western blotting method in the presence of morin and oxacillin. An increased susceptibility of MRSA toward oxacillin was observed in the presence of morin. The protein level of PBP2a was reduced when MRSA (ATCC 33591) was treated with the combination of morin and oxacillin, indicating that the combination of morin and oxacillin potentiates the killing effect against MRSA. The present study indicates that the killing effect by the combinative treatment of morin and ß-lactam antibiotic is dependent on the PBP2a-mediated resistance mechanism.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Flavonoides/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , beta-Lactamas/agonistas , Ampicilina/agonistas , Ampicilina/farmacología , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Recuento de Colonia Microbiana , Citoplasma/efectos de los fármacos , Citoplasma/ultraestructura , Sinergismo Farmacológico , Humanos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Oxacilina/agonistas , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/metabolismo , República de Corea , Infecciones Estafilocócicas/microbiología , beta-Lactamas/farmacología
6.
Foodborne Pathog Dis ; 11(3): 234-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24601672

RESUMEN

Sophoraflavanone B (SPF-B), a prenylated flavonoid, can be isolated from the roots of Desmodium caudatum. The aim of this study was to determine the mechanism of SPF-B's antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a multidrug-resistant pathogen and the main cause of hospital- and community-acquired infections. The minimum inhibitory concentration (MIC) of SPF-B was assessed using the broth microdilution method. The mechanism of action of SPF-B on S. aureus was analyzed in combination assays incorporating detergents, ATPase inhibitors, and peptidoglycan (PGN) derived from S. aureus. Furthermore, morphological changes in the SPF-B-treated MRSA strains were investigated using transmission electron microscopy. The MIC of SPF-B for MRSA was in the range of 15.6-31.25 µg/mL. The mechanism of action of SPF-B on MRSA was investigated using combination assays with detergent and ATPase inhibitors. The optical density at 600 nm of MRSA suspensions treated with a combination of detergent and SPF-B reduced the MRSA by 63%-73%. In the SPF-B and PGN combination assay, direct binding of SPF-B with PGN from S. aureus was evident. These data may be validated for the development of new antibacterial drugs for low MRSA resistance.


Asunto(s)
Antiinfecciosos/farmacología , Flavanonas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Peptidoglicano/metabolismo , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Detergentes/farmacología , Diciclohexilcarbodiimida/farmacología , Flavanonas/química , Flavanonas/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión
7.
Pharmaceutics ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675190

RESUMEN

Scrophularia have traditionally been used as herbal medicines to treat neuritis, sore throats, and laryngitis. In particular, S. takesimensis, a Korean endemic species with restricted distribution on Ulleung Island, holds significant resource and genetic value. However, its pharmacological properties have not been thoroughly evaluated. Thus, we provide detailed morphological characteristics and genomic information for S. takesimensis in this study. Moreover, its pharmacological activity was evaluated in an ovalbumin-induced asthma rat model, using extracts of S. takesimensis roots (100 or 200 mg/kg). The distinguishing features of S. takesimensis from related species include the presence or absence of stem wings, leaf shape, and habitat. The chloroplast (cp) genome of this species is 152,420 bp long and exhibits a conserved quadripartite structure. A total of 114 genes were identified, which included 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. The gene order, content, and orientation of the S. takesimensis cp genome was highly conserved and consistent with the general structure observed in S. buergeriana and S. ningpoensis cp genomes. Confirming the anti-inflammatory effects of S. takesimensis extract (STE) using an established mouse model of ovalbumin-induced asthma, we observed reduced asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and suppression of T helper 2 (Th2) cell. Furthermore, STE treatment reduced Th2 cell activation and differentiation. This study underscores the medicinal value of S. takesimensis. The importance of preserving S. takesimensis was revealed and crucial insights were provided for further research on its utilization as a medicinal resource.

8.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671867

RESUMEN

Asian sand dust (ASD), generally produced in East Asia, including China, Japan, and Korea, directly leads to the development of pulmonary disease and exacerbates underlying pulmonary diseases. Loranthus tanakae Franch. and Sav. is a traditional herbal medicine applied to improve various inflammatory conditions. Here, we evaluated the curative properties of L. tanakae ethanol extract (LTE) against pulmonary inflammation caused by ASD. Additionally, to investigate the mechanism of action of LTE, we performed network pharmacological analysis. ASD was administrated on day 1, 3, and 5 by intranasal instillation, and LTE was orally administered for 6 days. Administration of LTE significantly decreased inflammatory cytokines and the number of inflammatory cells in bronchoalveolar lavage fluid, which was accompanied by a decrease in inflammatory cell accumulation in pulmonary tissue. Administration of LTE decreased the expression of cyclooxygenase2 and matrix metalloproteinase-9 in mice exposed to ASD with the decline in p65 phosphorylation. Additionally, administration of LTE significantly elevated hemeoxygenase (HO)-1 expression in the pulmonary tissue of mice exposed to ASD. These results were consistent with the data of network pharmacological analysis. This experiment showed that LTE attenuated pulmonary inflammation caused by ASD via inhibition of NF-κB and elevation of HO-1. Therefore, LTE may have potential as a therapeutic agent to treat pulmonary inflammation caused by ASD.

9.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543055

RESUMEN

Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36644439

RESUMEN

Bojungikki-tang (BJIT) is a traditional herbal medicine used in Korea, Japan, and China to treat gastrointestinal disorders. In this study, we aimed to investigate whether BJIT has protective effects against radiation-induced intestinal injury and to predict the underlying therapeutic mechanisms and related pathways via network pharmacological analyses. BJIT was injected intraperitoneally (50 mg/kg body weight) to C3H/HeN mice at 36 and 12 h before exposure to partial abdominal irradiation (5 Gy and 13 Gy) to evaluate the apoptotic changes and the histological changes and variations in inflammatory cytokine mRNA levels in the jejunum, respectively. Through in silico network analysis, we predicted the mechanisms underlying BJIT-mediated regulation of radiation-induced intestinal injury. BJIT reduced the level of apoptosis in the jejunal crypts 12 h post 5-Gy irradiation. Histological assessment revealed intestinal morphological changes in irradiated mice 3.5 days post 13-Gy irradiation. Furthermore, BJIT decreased inflammatory cytokine levels following radiation exposure. Apoptosis, TNF, p53, VEGF, toll-like receptor, PPAR, PI3K-Akt, and MAPK signaling pathways, as well as inflammatory bowel disease (IBD), were found to be linked to the radioprotective effects of BJIT against intestinal injury. According to our results, BJIT exerted its potential protective effects by attenuating histopathological changes in jejunal crypts and suppressing inflammatory mediator levels. Therefore, BJIT is a potential therapeutic agent that can treat radiation-induced intestinal injury and its associated symptoms.

11.
Pharmaceutics ; 15(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765323

RESUMEN

Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.

12.
Foodborne Pathog Dis ; 9(8): 686-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22845553

RESUMEN

Tetrandrine (TET) is a bis-benzylisoquinoline alkaloid derived from the radix of Stephania tetrandra S. Moore. TET performs a wide spectrum of biological activities. The radix of S. tetrandrae has been used traditionally in Asia, including Korea, to treat congestive circulatory disorders and inflammatory diseases. The aim of this study was to examine the mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. The mechanism was investigated by studying the effects of TET in combination with detergent or membrane potential un-couplers. In addition, the direct involvement of peptidoglycan (PGN) was assessed in titration assays. TET activity against S. aureus was 125-250 µg/mL, and the minimum inhibitory concentration (MIC) of the two reference strains was 250 µg/mL. The OD(600) of each suspension treated with a combination of ethylenediaminetetraacetic acid (EDTA), tris(hydroxymethyl) aminomethane (TRIS), and Triton X-100 (TX) with TET (0.25×MIC) had been reduced from 43% to 96%. Additional structure-function studies on the antibacterial activity of TET in combination with other agents may lead to the discovery of more effective antibacterial agents.


Asunto(s)
Antibacterianos/farmacología , Bencilisoquinolinas/farmacología , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Farmacorresistencia Bacteriana , Ácido Edético/química , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Octoxinol/química , Peptidoglicano/metabolismo , Staphylococcus aureus/patogenicidad , Stephania tetrandra/química , Trometamina/química
13.
Food Sci Nutr ; 10(11): 3969-3978, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348800

RESUMEN

The larvae of Protaetia brevitarsis seulensis have been used as a food ingredient and are known for their nutritional value and anti-inflammatory properties. However, whether P. brevitarsis seulensis larvae demonstrate protective effects against radiation-induced testicular injury has not been investigated. In this study, the protective effects of an aqueous extract of P. brevitarsis seulensis larvae (PBE) against radiation-induced testicular injury were tested. Male C57BL/6 mice were administered PBE (5 or 10 mg/kg) orally for 14 days before exposure to focal pelvic irradiation. Histopathological examinations were conducted at 8 h and 30 d after radiation exposure. PBE pretreatment reduced the radiation-induced apoptosis of germ cells at 8 h after irradiation and significantly increased testis and epididymis weights relative to those of the irradiated control mice at 30 days. PBE protected against histopathological damage and decreased the radiation-induced effects on the epithelium height and seminiferous tubule diameter. Furthermore, the extract ameliorated the radiation-induced morphological abnormalities of sperm cells and improved their motility. It also prevented a decrease in the epididymal sperm count caused by irradiation. Moreover, the extract alleviated the generation of reactive oxygen species, and its antioxidative activity increased in a dose-dependent manner. Among the six major compounds isolated from PBE, benzoic acid and uridine showed the highest antioxidant activities. These results suggest that PBE protects against radiation-induced testicular injury via its antioxidative properties. Thus, it has potential clinical applicability as a neoadjuvant therapy for the prevention of testicular damage caused by cancer radiotherapy.

14.
Biomed Pharmacother ; 145: 112410, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34775237

RESUMEN

BACKGROUND: Phlomis umbrosa Turczaninow has been used as a tradition herbal medicine for treating various inflammatory diseases. PURPOSE: In present study, we explored the effects of P. umbrosa on asthma induced by ovalbumin (OVA) and elucidated the mechanism via in vivo verification and network pharmacology prediction. METHODS: The animals were intraperitoneally injected OVA on day 1 and 14, followed by OVA inhalation on days 21, 22, and 23. The animals were daily treated P. umbrosa extract (PUE, 20 and 40 mg/kg) by oral gavage from day 18 to day 23. RESULTS: PUE significantly decreased airway hyperresponsiveness, eosinophilia, and the production of inflammatory cytokines and OVA specific immunoglobulin E in animals with asthma, along with a reduction in airway inflammation and mucus secretion in lung tissue. In network analysis, antiasthmatic effects of PUE were closely related with suppression of mitogen-activated protein kinases and matrix metalloproteinases (MMPs). Consistent with the results from network analysis, PUE suppressed the phosphorylation of ERK and p65, which was accompanied by a decline in MMP-9 expression. CONCLUSION: Administration of PUE effectively reduced allergic responses in asthmatic mice, which was associated with the suppressed phosphorylation of ERK and p65, and expression of MMP-9. These results indicate that PUE has therapeutic potential to treat allergic asthma.


Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Phlomis/química , Extractos Vegetales/farmacología , Animales , Antiasmáticos/administración & dosificación , Antiasmáticos/aislamiento & purificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Farmacología en Red , Ovalbúmina , Fosforilación/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Hipersensibilidad Respiratoria/tratamiento farmacológico , Factor de Transcripción ReIA/metabolismo
15.
J Ethnopharmacol ; 282: 114574, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461187

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY: Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS: To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS: Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS: These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Medicina Tradicional de Asia Oriental , Moco/metabolismo , Ovalbúmina , Extractos Vegetales/uso terapéutico , Animales , Asma/inducido químicamente , Asma/patología , Líquido del Lavado Bronquioalveolar , COVID-19 , Citocinas/metabolismo , Femenino , Citometría de Flujo , Inmunoglobulina E/inmunología , Mediadores de Inflamación/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Pandemias , Células Th2/efectos de los fármacos , Células Th2/inmunología , Triptaminas/farmacología
16.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36290608

RESUMEN

Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary inflammation using cells exposed to cigarette smoke condensate (CSC) and lipopolysaccharide (LPS) in vitro and in vivo in mice and performed a network analysis between components and genes based on a public database. We detected quercitrin, afzelin, rhamnetin 3-rhamnoside, and rhamnocitrin 3-rhamnoside in LTE, which induced a significant reduction in inflammatory mediators including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and inflammatory cells in CSC exposed H292 cells and in mice, accompanied by a reduction in inflammatory cell infiltration into lung tissue. In addition, LTE increased translocation into the nuclei of nuclear factor erythroid-2-related factor 2 (Nrf2). By contrast, the activation of nuclear factor (NF)-κB, induced by CSC exposure, decreased after LTE application. These results were consistent with the network pharmacological analysis. In conclusion, LTE effectively attenuated pulmonary inflammation caused by CSC+LPS exposure, which was closely involved in the enhancement of Nrf2 expression and suppression of NF-κB activation. Therefore, LTE may be a potential treatment option for pulmonary inflammatory diseases including chronic obstructive pulmonary disease (COPD).

17.
J Ethnopharmacol ; 269: 113752, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33359858

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Angelica reflexa B.Y.Lee (AR) have been used to treat cough, phlegm, neuralgia, and arthralgia in Northeast Asia. AIM OF THE STUDY: The anti-asthmatic effect of AR root extract (ARE) was determined using a murine airway allergic inflammation model and the primary T cell polarization assay. MATERIALS AND METHODS: To evaluate the anti-asthmatic effect of ARE, inflammatory cell infiltration was determined histologically and inflammatory mediators were measured in bronchoalveolar lavage fluid (BALF). Furthermore, the effects of AREs on Th2 cell differentiation and activation were determined by western blotting and flow cytometry. RESULTS: Asthmatic phenotypes were alleviated by ARE treatment, which reduced mucus production, inflammatory cell infiltration (especially eosinophilia), and type 2 cytokine levels in BALF. ARE administration to mice reduced the number of activated Th2 (CD4+CD25+) cells and level of GATA3 in the lungs. Furthermore, ARE treatment inhibited the differentiation of Th2 cells in primary cell culture systems via interferon regulatory factor 4 (IRF4) signaling. CONCLUSIONS: Our findings indicate that the anti-asthmatic effect of AREs is mediated by the reduction in Th2 cell activation by regulating IRF4.


Asunto(s)
Angelica/química , Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Hipersensibilidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Neumonía/tratamiento farmacológico , Células Th2/efectos de los fármacos , Animales , Antiasmáticos/química , Antiasmáticos/uso terapéutico , Asma/inducido químicamente , Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Femenino , Factor de Transcripción GATA3/efectos de los fármacos , Factor de Transcripción GATA3/metabolismo , Hipersensibilidad/inmunología , Factores Reguladores del Interferón/efectos de los fármacos , Factores Reguladores del Interferón/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/toxicidad , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Raíces de Plantas/química , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Eosinofilia Pulmonar/inducido químicamente , Eosinofilia Pulmonar/tratamiento farmacológico , Células RAW 264.7 , Células Th2/inmunología
18.
Food Sci Nutr ; 9(10): 5361-5369, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646508

RESUMEN

Protaetia brevitarsis seulensis is an animal-based medicine used traditionally in China, Japan, and Korea to treat hepatic disorders; it has been shown to possess various pharmacological effects such as antibacterial and antioxidant activities. In this study, we investigated the effects of P. brevitarsis on a testosterone-induced benign prostatic hyperplasia (BPH) rat model. To establish the BPH model, the animals were administered a subcutaneous injection of testosterone daily for 28 days. P. brevitarsis was administered by oral gavage at doses of 12.5, 25, and 50 mg/kg for 28 days, along with testosterone injection. P. brevitarsis treatment markedly decreased the absolute and relative prostate weight of BPH animals. The levels of dihydrotestosterone was reduced in P. brevitarsis-treated animals compared to those in the BPH animals. Histological analysis of the prostate showed that P. brevitarsis treatment effectively suppressed the testosterone-induced hyperplasia of prostatic epithelial cells, which was accompanied by reductions in the PCNA and Ki-67 expressions in prostatic tissues. These results indicate that P. brevitarsis effectively suppresses testosterone-induced development of BPH, and thus, is a potential therapeutic agent for BPH.

19.
Plants (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256150

RESUMEN

Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.

20.
Cells ; 9(3)2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164364

RESUMEN

Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Dióxido de Silicio/uso terapéutico , Silibina/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Humanos , Inflamación , Ratones , Nanopartículas , Transducción de Señal , Dióxido de Silicio/farmacología , Silibina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA