Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Methods ; 15(40): 5369-5379, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37812186

RESUMEN

The imaging and quantification of stained red blood cells (RBCs) are important for identifying RBCs in hematology and for diagnosing diseased RBCs or parasites in cytopathology. Romanowsky staining has been used traditionally to produce hues in blood cells using a mixture of anionic eosin Y and cationic methylene blue and azure B. While Romanowsky stains have been widely used in cytopathology, end-users have experienced problems with varying results in staining due to the premature precipitation or evaporation of methanol, leading to the inherent inconsistency of solution-based Romanowsky staining. Herein, we demonstrate that the staining and destaining of blood smears are controllable by the contact time of agarose gel stamps. While the extent of staining and destaining is discernable by the hue values of stamped red blood cells in micrographs, the quantification of adsorbed and desorbed Romanowsky dye molecules (in particular, eosin Y, methylene blue and azure B) from and to the agarose gel stamps needs a model that can explain the sorption process. We found predictable sorption of the Romanowsky dye molecules from the pseudo-second-order kinetic model for adsorption and the one phase decay model for desorption. Thus, the method of agarose gel stamping demonstrated here could be an alternative to solution-based Romanowsky staining with the predictable quantity of sorption and timing of contact.


Asunto(s)
Azul de Metileno , Fenotiazinas , Sefarosa , Eosina Amarillenta-(YS) , Colorantes , Coloración y Etiquetado , Eritrocitos , Geles
2.
ACS Appl Mater Interfaces ; 13(19): 22124-22130, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33870697

RESUMEN

An accurate microscopical analysis of blood smears requires a reproducible and convenient method of staining. Solution-based staining procedures can be cumbersome. Especially in low- and middle-income countries, the lack of skilled technicians and adequate laboratory facilities, as well as insufficient water and reagent quality, often become confounding factors. To overcome these obstacles, we developed a new cell staining method based on sequential stamping of agarose gel patches that contain eosin, methylene blue/oxidized methylene blue, Azure B, and buffer, respectively. Our method, termed "hydrogel staining", provides a simple, reproducible, solution-free, and inexpensive approach to stain blood cells. We have optimized incubation times to achieve the optimal transfer of dyes to fixed blood cells on a glass slide, with outcomes comparable to conventional solution-based methods for white blood cells and malaria-infected red blood cells. This hydrogel staining method does not require special skills to produce excellent quality stained blood film slides. The new method could enhance the accuracy of microscopical examination of blood smears, especially in resource-limited settings.


Asunto(s)
Células Sanguíneas , Hidrogeles/química , Coloración y Etiquetado/métodos , Humanos , Malaria/sangre , Malaria/diagnóstico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA