Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Hered ; 112(6): 540-548, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34146095

RESUMEN

The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification.


Asunto(s)
Felidae , Puma , Animales , Femenino , Genoma , Genómica , Masculino , Anotación de Secuencia Molecular , Puma/genética
2.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510061

RESUMEN

The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.


Asunto(s)
Arvicolinae/genética , Cromosomas de los Mamíferos/genética , Especiación Genética , Variación Genética , Translocación Genética/genética , Animales , Arvicolinae/clasificación , Bandeo Cromosómico , Diploidia , Geografía , Hibridación Genética , Cariotipo , Tayikistán
3.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719894

RESUMEN

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de los Mamíferos/genética , Cricetulus/genética , Cariotipo , Filogenia , Animales , Haplotipos/genética
4.
Cytogenet Genome Res ; 152(3): 148-157, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850953

RESUMEN

Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order.


Asunto(s)
ADN Satélite/genética , Peces/genética , Cromosomas Sexuales/genética , Animales , ADN Ribosómico/genética , Evolución Molecular , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Microdisección , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN
5.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030702

RESUMEN

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Asunto(s)
Genoma , Ratas Topo , Humanos , Cobayas , Animales , Sintenía , Hibridación Fluorescente in Situ , Cariotipo , Ratas Topo/genética
6.
Genes (Basel) ; 14(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36980891

RESUMEN

Pusa sibirica, the Baikal seal, is the only extant, exclusively freshwater, pinniped species. The pending issue is, how and when they reached their current habitat-the rift lake Baikal, more than three thousand kilometers away from the Arctic Ocean. To explore the demographic history and genetic diversity of this species, we generated a de novo chromosome-length assembly, and compared it with three closely related marine pinniped species. Multiple whole genome alignment of the four species compared with their karyotypes showed high conservation of chromosomal features, except for three large inversions on chromosome VI. We found the mean heterozygosity of the studied Baikal seal individuals was relatively low (0.61 SNPs/kbp), but comparable to other analyzed pinniped samples. Demographic reconstruction of seals revealed differing trajectories, yet remarkable variations in Ne occurred during approximately the same time periods. The Baikal seal showed a significantly more severe decline relative to other species. This could be due to the difference in environmental conditions encountered by the earlier populations of Baikal seals, as ice sheets changed during glacial-interglacial cycles. We connect this period to the time of migration to Lake Baikal, which occurred ~3-0.3 Mya, after which the population stabilized, indicating balanced habitat conditions.


Asunto(s)
Lagos , Phocidae , Animales , Phocidae/genética , Cariotipo
7.
Genes (Basel) ; 12(7)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202749

RESUMEN

The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated Calomyscus elburzensis, Calomyscus mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51-52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals.


Asunto(s)
Cromosomas de los Mamíferos/genética , Cricetinae/genética , Análisis Citogenético , Evolución Molecular , Animales , Bandeo Cromosómico , Cricetinae/clasificación , Heterocromatina/genética , Hibridación Fluorescente in Situ , Irán , Cariotipo , Ratones/clasificación , Ratones/genética , Filogeografía , Especificidad de la Especie , Sintenía/genética , Turkmenistán
8.
Sci Rep ; 11(1): 10557, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006914

RESUMEN

The genus status of Urocricetus was defined recently based on morphological and molecular data. Even though the amount of evidence for a separate phylogenetic position of this genus among Cricetinae continues to increase, there is still no consensus on its relationship to other groups. Here we give the first comprehensive description of the U. kamensis karyotype (2n = 30, NFa = 50) including results of comparative cytogenetic analysis and detailed examination of its phylogenetic position by means of numerous molecular markers. The molecular data strongly indicated that Urocricetus is a distant sister group to Phodopus. Comparative cytogenetic data showed significant reorganization of the U. kamensis karyotype compared to karyotypes of all other hamsters investigated earlier. The totality of findings undoubtedly means that Urocricetus belongs to a separate divergent lineage of Cricetinae.


Asunto(s)
Cricetinae/genética , Cariotipificación , Animales , Bandeo Cromosómico , Cricetinae/clasificación , Femenino , Masculino , Filogenia , Especificidad de la Especie
9.
Genes (Basel) ; 11(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244767

RESUMEN

The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.


Asunto(s)
Cromosomas Humanos Par 13/genética , Evolución Molecular , Reordenamiento Génico , Mamíferos/genética , Neoplasias/genética , Neoplasias/patología , Sintenía , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Humanos , Filogenia
10.
Genes (Basel) ; 11(4)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235544

RESUMEN

The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.


Asunto(s)
Arvicolinae/genética , Evolución Molecular , Marcadores Genéticos , Polimorfismo Genético , Cromosomas Sexuales/genética , Animales , Arvicolinae/clasificación , Femenino , Genética de Población , Masculino , Procesos de Determinación del Sexo
11.
Comp Cytogenet ; 13(2): 147-177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275526

RESUMEN

Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.

12.
Mol Ecol Resour ; 19(4): 1015-1026, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30972949

RESUMEN

Researchers have assembled thousands of eukaryotic genomes using Illumina reads, but traditional mate-pair libraries cannot span all repetitive elements, resulting in highly fragmented assemblies. However, both chromosome conformation capture techniques, such as Hi-C and Dovetail Genomics Chicago libraries and long-read sequencing, such as Pacific Biosciences and Oxford Nanopore, help span and resolve repetitive regions and therefore improve genome assemblies. One important livestock species of arid regions that does not have a high-quality contiguous reference genome is the dromedary (Camelus dromedarius). Draft genomes exist but are highly fragmented, and a high-quality reference genome is needed to understand adaptation to desert environments and artificial selection during domestication. Dromedaries are among the last livestock species to have been domesticated, and together with wild and domestic Bactrian camels, they are the only representatives of the Camelini tribe, which highlights their evolutionary significance. Here we describe our efforts to improve the North African dromedary genome. We used Chicago and Hi-C sequencing libraries from Dovetail Genomics to resolve the order of previously assembled contigs, producing almost chromosome-level scaffolds. Remaining gaps were filled with Pacific Biosciences long reads, and then scaffolds were comparatively mapped to chromosomes. Long reads added 99.32 Mbp to the total length of the new assembly. Dovetail Chicago and Hi-C libraries increased the longest scaffold over 12-fold, from 9.71 Mbp to 124.99 Mbp and the scaffold N50 over 50-fold, from 1.48 Mbp to 75.02 Mbp. We demonstrate that Illumina de novo assemblies can be substantially upgraded by combining chromosome conformation capture and long-read sequencing.


Asunto(s)
Camelus/genética , Biología Computacional/métodos , Genoma , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Animales , Clima Desértico
13.
PLoS One ; 10(5): e0127937, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010445

RESUMEN

The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.


Asunto(s)
Mapeo Cromosómico , Pintura Cromosómica , Cromosomas Humanos/genética , Evolución Molecular , Genoma Humano , Animales , Cobayas , Humanos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA