Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 26(5): 1302-1320, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27755745

RESUMEN

Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture-recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993-1411) in 1987 to 806 (95% BCI = 653-984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001-2010 = 1.02, 95% BCI = 0.98-1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00-1.05) and 0.97 (95% BCI = 0.92-1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations.


Asunto(s)
Bahías , Cambio Climático , Ecosistema , Cubierta de Hielo , Ursidae/fisiología , Animales , Regiones Árticas , Femenino , Masculino , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
2.
Ecol Appl ; 24(5): 927-37, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25154087

RESUMEN

The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population (e.g., via comparison with wild populations). For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods (namely, hierarchical Bayesian implementations of state-space models) allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered Whooping Cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state, mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging, considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Animales , Teorema de Bayes , Demografía , Femenino , Masculino , Dinámica Poblacional
3.
Ecology ; 91(7): 1916-23, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20715610

RESUMEN

Whether different sources of mortality are additive, compensatory, or depensatory is a key question in population biology. A way to test for additivity is to calculate the correlation between cause-specific mortality rates obtained from marked animals. However, existing methods to estimate this correlation raise several methodological issues. One difficulty is the existence of an intrinsic bias in the correlation parameter. Although this bias can be formally expressed, it requires knowledge about natural survival without any competing mortality source, which is difficult to assess in most cases. Another difficulty lies in estimating the true process correlation while properly accounting for sampling variation. Using a Bayesian approach, we developed a state-space model to assess the correlation between two competing sources of mortality. By distinguishing the mortality process from its observation through dead recoveries and live recaptures, we estimated the process correlation. To correct for the intrinsic bias, we incorporated experts' opinions on natural survival. We illustrated our approach using data on a hunted population of wild boars. Mortalities were not additive and natural mortality increased with hunting mortality likely as a consequence of non-controlled mortality by crippling loss. Our method opens perspectives for wildlife management and for the conservation of endangered species.


Asunto(s)
Sistemas de Identificación Animal , Teorema de Bayes , Longevidad/fisiología , Modelos Biológicos , Sus scrofa/fisiología , Animales , Demografía , Densidad de Población
4.
Evolution ; 65(11): 3100-12, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22023578

RESUMEN

Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality.


Asunto(s)
Aptitud Genética/fisiología , Parto/fisiología , Selección Genética/fisiología , Sus scrofa/fisiología , Factores de Edad , Animales , Francia , Actividades Humanas , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA