Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Genomics ; 24(1): 331, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322468

RESUMEN

Physiological effects of ocean acidification associated with elevated CO2 concentrations in seawater is the subject of numerous studies in teleost fish. While the short time within-generation impact of ocean acidification (OA) on acid-base exchange and energy metabolism is relatively well described, the effects associated with transgenerational exposure to OA are much less known. Yet, the impacts of OA can vary in time with the potential for acclimation or adaptation of a species. Previous studies in our lab demonstrated that transgenerational exposure to OA had extensive effects on the transcriptome of the olfactory epithelium of European sea bass (Dicentrarchus labrax), especially on genes related to ion balance, energy metabolism, immune system, synaptic plasticity, neuron excitability and wiring. In the present study, we complete the previous work by investigating the effect of transgenerational exposure to OA on the hepatic transcriptome of European sea bass. Differential gene expression analysis was performed by RNAseq technology on RNA extracted from the liver of two groups of 18 months F2 juveniles that had been exposed since spawning to the same AO conditions as their parents (F1) to either actual pH or end-of-century predicted pH levels (IPCC RCP8.5), respectively. Here we show that transgenerational exposure to OA significantly impacts the expression of 236 hepatic transcripts including genes mainly involved in inflammatory/immune responses but also in carbohydrate metabolism and cellular homeostasis. Even if this transcriptomic impact is relatively limited compared to what was shown in the olfactory system, this work confirmed that fish transgenerationally exposed to OA exhibit molecular regulation of processes related to metabolism and inflammation. Also, our data expand the up-regulation of a key gene involved in different physiological pathways including calcium homeostasis (i.e. pthr1), which we already observed in the olfactory epithelium, to the liver. Even if our experimental design does not allow to discriminate direct within F2 generation effects from transgenerational plasticity, these results offer the perspective of more functional analyses to determine the potential physiological impact of OA exposure on fish physiology with ecological relevance.


Asunto(s)
Lubina , Transcriptoma , Animales , Agua de Mar/química , Lubina/metabolismo , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Hígado
2.
Fish Physiol Biochem ; 48(4): 1117-1135, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35917042

RESUMEN

In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Femenino , Hidrocortisona , Masculino , Diferenciación Sexual/genética
3.
Gen Comp Endocrinol ; 291: 113439, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061640

RESUMEN

Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.


Asunto(s)
Encéfalo/fisiología , Cambio Climático , Peces/fisiología , Gónadas/fisiología , Hipófisis/fisiología , Reproducción/fisiología , Animales , Gónadas/efectos de los fármacos
4.
Gen Comp Endocrinol ; 258: 184-193, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28837788

RESUMEN

This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol.


Asunto(s)
Desoxicorticosterona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Glándula Interrenal/metabolismo , Oncorhynchus mykiss/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estrés Fisiológico/fisiología , Crianza de Animales Domésticos , Animales , Desoxicorticosterona/sangre , Femenino , Hidrocortisona/sangre , Masculino , Oncorhynchus mykiss/fisiología , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Receptores de Esteroides/metabolismo , Restricción Física , Transducción de Señal/genética , Transducción de Señal/fisiología , Estrés Fisiológico/genética
5.
J Exp Biol ; 220(Pt 17): 3119-3126, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28646037

RESUMEN

European sea bass (Dicentrarchus labrax) inhabits coastal waters and may be exposed to hypoxia at different life stages, requiring physiological and behavioral adaptation. In the present study, we attempted to determine whether regulation of hemoglobin (Hb) gene expression plays a role in the physiological response to chronic moderate hypoxia in whole larvae and hematopoietic tissues (head kidney and spleen) of juveniles. We also tested the hypothesis that hypoxia exposure at the larval stage could induce a long-term effect on the regulation of Hb gene expression. For this purpose, D. labrax were exposed to a non-lethal hypoxic condition (40% air saturation) at the larval stage from 28 to 50 days post-hatching (dph) and/or at the juvenile stage from 196 to 296 dph. Data obtained from larvae indicate that hypoxia induced a subtype-specific regulation of Hb gene expression, with a significant decrease of MN-Hbα3, MN-Hbß4 and MN-Hbß5 and increase of MN-Hbα2, LA-Hbα1 and LA-Hbß1 transcript levels. Hypoxia did not induce regulation of Hb gene expression in juveniles, except in the head kidney for those that experienced hypoxia at the larval stage. The latter exhibited a significant hypoxia-induced stimulation of MN-Hbα2, LA-Hbα1 and LA-Hbß1 gene expression, associated with stimulation of the PHD-3 gene involved in the hypoxia-inducible factor oxygen-sensing pathway. We conclude that subtype- and stage-specific regulation of Hb gene expression plays a role in the physiological response of D. labrax to cope with hypoxia and that early exposure to low oxygen concentration has a long-term effect on this response.


Asunto(s)
Lubina/fisiología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Hemoglobinas/genética , Adaptación Fisiológica , Anaerobiosis , Animales , Lubina/genética , Proteínas de Peces/metabolismo , Hemoglobinas/metabolismo
6.
J Exp Biol ; 220(Pt 10): 1846-1851, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28302867

RESUMEN

Ocean warming, eutrophication and the consequent decrease in oxygen lead to smaller average fish size. Although such responses are well known in an evolutionary context, involving multiple generations, this appears to be incompatible with current rapid environmental change. Instead, phenotypic plasticity could provide a means for marine fish to cope with rapid environmental changes. However, little is known about the mechanisms underlying plastic responses to environmental conditions that favour small phenotypes. Our aim was to investigate how and why European sea bass that had experienced a short episode of moderate hypoxia during their larval stage subsequently exhibited a growth depression at the juvenile stage compared with the control group. We examined whether energy was used to cover higher costs for maintenance, digestion or activity metabolisms, as a result of differing metabolic rate. The lower growth was not a consequence of lower food intake. We measured several respirometry parameters and we only found a higher specific dynamic action (SDA) duration and lower SDA amplitude in a fish phenotype with lower growth; this phenotype was also associated with a lower protein digestive capacity in the intestine. Our results contribute to the understanding of the observed decrease in growth in response to climate change. They demonstrate that the reduced growth of juvenile fishes as a consequence of an early life hypoxia event was not due to a change of fish aerobic scope but to a specific change in the efficiency of protein digestive functions. The question remains of whether this effect is epigenetic and could be reversible in the offspring.


Asunto(s)
Lubina/crecimiento & desarrollo , Hipoxia/metabolismo , Proteolisis , Animales , Metabolismo Basal , Lubina/metabolismo , Lubina/fisiología , Tamaño Corporal/fisiología , Cambio Climático , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Fenotipo
7.
Gen Comp Endocrinol ; 229: 100-11, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26979276

RESUMEN

In this study, we report the cloning of three transcripts for leptin receptor in the European sea bass, a marine teleost of economic interest. The two shortest variants, generated by different splice sites, encode all functional extracellular and intracellular domains but missed the transmembrane domain. The resulting proteins are therefore potential soluble binding proteins for leptin. The longest transcript (3605bp), termed sblepr, includes all the essential domains for binding and transduction of the signal. Thus, it is proposed as the ortholog for the human LEPR gene, the main responsible for leptin signaling. Phylogenetic analysis shows the sblepr clustered within the teleost leptin receptor group in 100% of the bootstrap replicates. The neuroanatomical localization of sblepr expressing cells has been assessed by in situ hybridization in brains of sea bass of both sexes during their first sexual maturation. At histological level, the distribution pattern of sblepr expressing cells in the brain shows no clear differences regarding sex or reproductive season. Transcripts of the sblepr have a widespread distribution throughout the forebrain and midbrain until the caudal portion of the hypothalamus. A high hybridization signal is detected in the telencephalon, preoptic area, medial basal and caudal hypothalamus and in the pituitary gland. In a more caudal region, sblepr expressing cells are identified in the longitudinal torus. The expression pattern observed for sblepr suggests that in sea bass, leptin is very likely to be involved in the control of food intake, energy reserves and reproduction.


Asunto(s)
Lubina/metabolismo , Receptores de Leptina/metabolismo , Animales , Lubina/genética , Ingestión de Alimentos , Europa (Continente) , Femenino , Masculino , Neuroanatomía , Filogenia , Reproducción , Distribución Tisular
8.
Int J Mol Sci ; 14(4): 7603-16, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23567273

RESUMEN

Several evidences supported the existence of melatonin effects on reproductive system in fish. In order to investigate whether melatonin is involved in the modulation of GnRH systems in the European sea bass, we have injected melatonin (0.5 µg/g body mass) in male specimens. The brain mRNA transcript levels of the three GnRH forms and the five GnRH receptors present in this species were determined by real time quantitative PCR. Our findings revealed day-night variations in the brain expression of GnRH-1, GnRH-3 and several GnRH receptors (dlGnRHR-II-1c, -2a), which exhibited higher transcript levels at mid-light compared to mid-dark phase of the photocycle. Moreover, an inhibitory effect of melatonin on the nocturnal expression of GnRH-1, GnRH-3, and GnRH receptors subtypes 1c, 2a and 2b was also demonstrated. Interestingly, the inhibitory effect of melatonin affected the expression of hypophysiotrophic GnRH forms and GnRH receptors that exhibit day-night fluctuations, suggesting that exogenous melatonin reinforce physiological mechanisms already established. These interactions between melatoninergic and GnRH systems could be mediating photoperiod effects on reproductive and other rhythmic physiological events in the European sea bass.


Asunto(s)
Lubina/metabolismo , Encéfalo/metabolismo , Proteínas de Peces/biosíntesis , Regulación de la Expresión Génica/fisiología , Melatonina/metabolismo , Receptores LHRH/biosíntesis , Animales , Femenino , Masculino , Fotoperiodo , Reproducción/fisiología
9.
Sci Total Environ ; 858(Pt 1): 159804, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349621

RESUMEN

The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.


Asunto(s)
Lubina , Agua de Mar , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Océanos y Mares , Cambio Climático , Lubina/fisiología , Dióxido de Carbono/toxicidad , Agua
10.
Gen Comp Endocrinol ; 175(3): 398-406, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22138555

RESUMEN

The European sea bass expresses three GnRH (Gonadotrophin Releasing Hormone) forms that exert pleiotropic actions via several classes of receptors. The GnRH-1 form is responsible for the endogenous regulation of gonadotrophin release by the pituitary gland but the role of GnRH-2 and GnRH-3 remains unclear in fish. In a previous study performed in sea bass, we have provided evidence of direct links between the GnRH-2 cells and the pineal organ and demonstrated a functional role for GnRH-2 in the modulation of the secretory activity of this photoreceptive organ. In this study, we have investigated the possible relationship between the GnRH-3 system and the retina in the same species. Thus, using a biotinylated dextran-amine tract-tracing method, we reveal the presence of retinopetal cells in the terminal nerve of sea bass, a region that also contains GnRH-3-immunopositive cells. Moreover, GnRH-3-immunoreactive fibers were observed at the boundary between the inner nuclear and the inner plexiform layers, and also within the ganglion cell layer. These results strongly suggest that the GnRH-3 neurons located in the terminal nerve area represent the source of GnRH-3 innervation in the retina of this species. In order to clarify whether the retina is a target for GnRH, the expression pattern of GnRH receptors (dlGnRHR) was also analyzed by RT-PCR and in situ hybridization. RT-PCR revealed the retinal expression of dlGnRHR-II-2b, -1a, -1b and -1c, while in situ hybridization only showed positive signals for the receptors dlGnRHR-II-2b and -1a. Finally, double-immunohistochemistry showed that GnRH-3 projections reaching the sea bass retina end in close proximity to tyrosine hydroxylase (dopaminergic) cells, which also expressed the dlGnRHR-II-2b receptor subtype. Taken together, these results suggest an important role for GnRH-3 in the modulation of dopaminergic cell activities and retinal functions in sea bass.


Asunto(s)
Lubina/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Ácido Pirrolidona Carboxílico/análogos & derivados , Retina/fisiología , Transducción de Señal/fisiología , Animales , Masculino , Receptores LHRH/fisiología , Células Ganglionares de la Retina/fisiología , Tirosina 3-Monooxigenasa/fisiología
11.
Mar Environ Res ; 182: 105783, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36332421

RESUMEN

Environmental changes can alter the nursery function of coastal areas through their impact on juveniles' growth and survival rates, an effect mediated by individuals' chronic stress response. Fish chronic stress can be quantified using scale cortisol but no study has yet been quantified the spatio-temporal variations in scale cortisol and its relationship with growth in wild nurseries. We collected wild sea bass juveniles (Dicentrarchus labrax, four years, three nurseries) and found that scale cortisol levels increased consistently with age and across cohorts in 2019 and 2020 probably due to greater stress history in older fish and/or heatwaves that occurred in summers of 2018 and 2019. Growth was impaired in fish with high scale cortisol in 2019 and 2020, confirming the usefulness of scale cortisol as a biomarker of broad and local constraints in wild fish; longer time series will enable us to identify environmental factors underpinning these temporal variations.


Asunto(s)
Lubina , Hidrocortisona , Humanos , Animales , Anciano , Estrés Fisiológico/fisiología , Lubina/fisiología , Estaciones del Año
12.
PLoS One ; 17(4): e0267228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35436318

RESUMEN

Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing "control" (pH 8.1, 300 µatm CO2), end-of-century climate change ("intermediate", pH 7.6, 900 µatm CO2) and "extreme" aquaculture conditions (pH 7.1, 3000 µatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.


Asunto(s)
Anguilla , Dióxido de Carbono , Animales , Dióxido de Carbono/análisis , Cambio Climático , Concentración de Iones de Hidrógeno , Agua de Mar/química
13.
Mar Environ Res ; 181: 105753, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36130468

RESUMEN

CO2 absorption is leading to ocean acidification (OA), which is a matter of major concern for marine calcifying species. This study investigated the effects of simulated OA on the reproduction of European abalone Haliotis tuberculata and the survival of its offspring. Four-year-old abalone were exposed during reproductive season to two relevant OA scenarios, ambient pH (8.0) and low pH (7.7). After five months of exposure, abalone were induced to spawn. The gametes, larvae and juveniles were then exposed for five months to the same pH conditions as their parents. Several biological parameters involved in adult reproduction as well as in larval, post-larval and juvenile fitness were measured. No effects on gametes, fertilisation or larval oxidative stress response were detected. However, developmental abnormalities and significant decreases in shell length and calcification were observed at veliger stages. The expression profile of a GABA A receptor-like gene appeared to be regulated by pH, depending on larval stage. Larval and post-larval survival was not affected by low pH. However, a lower survival and a reduction of growth were recorded in juveniles at pH 7.7. Our results confirm that OA negatively impacts larval and juvenile fitness and suggest the absence of carry-over effects on abalone offspring. This may compromise the survival of abalone populations in the near future.


Asunto(s)
Gastrópodos , Agua de Mar , Animales , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Gastrópodos/fisiología , Larva/fisiología
14.
J Pineal Res ; 51(4): 434-44, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21718359

RESUMEN

The existence of two arylalkylamine N-acetyltransferase 1 (Aanat1) genes in the genome of some teleosts has been reported recently by in silico analysis. However, there are no data concerning the similarities and/or differences between them and many questions remain to be answered, such as their expression sites, development, or kinetics. Here, we report the cloning of Aanat1a and Aanat1b cDNAs from the sole retina and show for the first time that at least three Aanat genes are expressed in a vertebrate species. Because melatonin is involved in fish ontogeny, we analyzed the developmental transcript levels of Aanat1a and Aanat1b by quantitative real-time PCR, showing their inverse and stage-specific expression patterns. Aanat1a was more abundant during early than late larval stages. Before metamorphosis, nocturnal expression was higher. At metamorphosis, Aanat1a expression decreased and lost these day-night variations. In contrast, the abundance of Aanat1b transcripts, low during early developing stages, rose significantly throughout metamorphosis. This situation seemed to apply to the adult because Aanat1a expression was lower than Aanat1b expression in the retina of adults, where the former did not exhibit day-night variations, while the latter did so with much higher nocturnal transcript levels. In situ hybridization analysis detected Aanat1a and Aanat1b messengers in the outer and inner nuclear layers of retina. The differences in abundance and distinct day-night expression patterns between Aanat1a and Aanat1b during sole development suggest different functions for these two enzymes as well as the existence of interactions between the melatoninergic and thyroid hormone systems during flatfish metamorphosis.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Peces Planos/embriología , Peces Planos/metabolismo , Metamorfosis Biológica/fisiología , Animales , N-Acetiltransferasa de Arilalquilamina/genética , Metamorfosis Biológica/genética , Retina/embriología , Retina/metabolismo
15.
J Toxicol Environ Health B Crit Rev ; 14(5-7): 370-86, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21790317

RESUMEN

Because a large proportion of potential endocrine disruptors (EDC) end up in surface waters, aquatic species are particularly vulnerable to their potential adverse effects. Recent studies identified a number of brain targets for EDC commonly present in environmentally relevant concentrations in surface waters. Among those neuronal systems disrupted by EDC are the gonadotropin-releasing hormone (GnRH) neurons, the dopaminergic and serotoninergic circuits, and more recently the Kiss/GPR54 system, which regulates gonadotropin release. However, one of the most striking effects of EDC, notably estrogen mimics, is their impact on the cyp19a1b gene that encodes the brain aromatase isoform in fish. Moreover, this is the only example in which the molecular basis of endocrine disruption is fully understood. The aims of this review were to (1) synthesize the most recent discoveries concerning the EDC effects upon neuroendocrine systems of fish and (2) provide, when possible, the underlying molecular basis of disruption for each system concerned. The potential adverse effects of EDC on neurogenesis, puberty, and brain sexualization are also described. It is important to point out the future environmental, social, and economical issues arising from endocrine disruption studies in the context of risk assessment.


Asunto(s)
Disruptores Endocrinos/toxicidad , Sistemas Neurosecretores/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Peces , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Medición de Riesgo , Maduración Sexual/efectos de los fármacos
16.
Brain Behav Evol ; 78(4): 272-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21921581

RESUMEN

The pineal organ of fish is a photosensitive structure that receives light information from the environment and transduces it into hormonal (rhythmic melatonin secretion) and neural (efferent projections/neurotransmitters) signals. In this study, we focused on this neural output. Thus, we performed a tract-tracing study using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), a fluorescent carbocyanine dye, in order to elucidate the efferent and afferent connections of the pineal organ in the European sea bass. The axonal transport of DiI revealed extensive bilateral projections in the sea bass brain. The efferent projections of the sea bass pineal organ reach the habenula, ventral thalamus, periventricular pretectum, central pretectal area, posterior tubercle and medial and dorsal tegmental areas. In addition, in this study we also examined the pinealopetal system in sea bass. This analysis demonstrated that the sea bass pineal organ receives central projections from neurons located, to a large extent, in brain areas innervated by pineal efferent projections, i.e. the thalamic eminence, habenula, ventral thalamus, dorsal thalamus, periventricular pretectum, posterior commissure, posterior tubercle and medial tegmental area. This study is the first description of pinealofugal projections in a representative of Perciformes, which constitutes a derived order within teleosts. Moreover, it represents the first evidence for the presence of pinealopetal neurons in the brain of a teleost species. Our findings, together with the analysis of retinal connections, represent a step forward in the understanding of the integration of photoperiodic signals into the central nervous system of sea bass.


Asunto(s)
Vías Aferentes/citología , Lubina/anatomía & histología , Vías Eferentes/citología , Glándula Pineal/inervación , Animales , Carbocianinas
17.
Mar Environ Res ; 170: 105438, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34340029

RESUMEN

Since sensory system allows organisms to perceive and interact with their external environment, any disruption in their functioning may have detrimental consequences on their survival. Ocean acidification has been shown to potentially impair olfactory system in fish and it is therefore essential to develop biological tools contributing to better characterize such effects. The olfactory marker protein (omp) gene is involved in the maturation and the activity of olfactory sensory neurons in vertebrates. In teleosts, two omp genes (ompa and ompb) originating from whole genome duplication have been identified. In this study, bioinformatic analysis allowed characterization of the ompa and ompb genes from the European seabass (Dicentrarchus labrax) genome. The European seabass ompa and ompb genes differ in deduced amino acid sequences and in their expression pattern throughout the tissues. While both ompa and ompb mRNA are strongly expressed in the olfactory epithelium, ompb expression was further observable in different brain areas while ompa expression was also detected in the eyes and in other peripheral tissues. Expression levels of ompa and ompb mRNA were investigated in adult seabass (4 years-old, F0) and in their offspring (F1) exposed to pH of 8 (control) or 7.6 (ocean acidification, OA). Under OA ompb mRNA was down-regulated while ompa mRNA was up-regulated in the olfactory epithelium of F0 adults, suggesting a long-term intragenerational OA-induced regulation of the olfactory sensory system. A shift in the expression profiles of both ompa and ompb mRNA was observed at early larval stages in F1 under OA, suggesting a disruption in the developmental process. Contrary to the F0, the expression of ompa and ompb mRNA was not anymore significantly regulated under OA in the olfactory epithelium of juvenile F1 fish. This work provides evidence for long-term impact of OA on sensorial system of European seabass as well as potential intergenerational acclimation of omp genes expression to OA in European seabass.


Asunto(s)
Lubina , Animales , Lubina/genética , Concentración de Iones de Hidrógeno , Océanos y Mares , Alimentos Marinos , Agua de Mar
18.
J Comp Physiol B ; 190(2): 161-167, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31915911

RESUMEN

The decrease in ocean pH that results from the increased concentration of dissolved carbon dioxide (CO2) is likely to influence many physiological functions in organisms. It has been shown in different fish species that ocean acidification (OA) mainly affects sensory systems, including olfaction. Impairment of olfactory function may be due to a dysfunction of the GABAergic system and to an alteration of neuronal plasticity in the whole brain and particularly in olfactory bulbs. Recent studies revealed that OA-driven effects on sensory systems are partly mediated by the regulation of the expression of genes involved in neurotransmission and neuronal development. However, these studies were performed in fish exposed to acidified waters for short periods, of only a few days. In the present paper, we investigated whether such effects could be observed in adult (4-years old) European sea bass (Dicentrarchus labrax) exposed to two hypercapnic and acidified conditions (PCO2 ≈ 980 µatm; pH total = 7.7 and PCO2 ≈ 1520 µatm; pH total = 7.5) from the larval stage. In a first approach, we analyzed by qPCR the expression of five genes involved in neurogenesis (DCX) or expressed in GABAergic (Gabra3), glutamatergic (Gria1) or dopaminergic (TH and DDC) neurons in the olfactory bulbs. The tested experimental conditions did not change the expression of any of the five genes. This result would indicate that a potential disruption of the olfactory function of sea bass exposed for a long term to near-future OA, either occurs at a level other than the transcriptional one or involves other actors of the sensory function.


Asunto(s)
Dióxido de Carbono/farmacología , Proteínas de Peces/genética , Bulbo Olfatorio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Lubina , Proteínas de Peces/metabolismo , Homeostasis , Concentración de Iones de Hidrógeno , Neurogénesis/genética , Océanos y Mares , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Agua de Mar , Transmisión Sináptica/genética
19.
Mar Environ Res ; 159: 105022, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32662446

RESUMEN

Elevated amounts of atmospheric CO2 are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family. In vertebrates, C1qDC family includes actors involved in different physiological processes including immune response and synaptic organization. Our microsynteny analysis revealed that this sghC1q gene is the orthologous gene in European sea bass to zebrafish (Danio rerio) cbln11 gene. We cloned the full length cbln11 mRNA and identified the different domains (the signal peptide, the coiled coil region and the globular C1q domain) of the deduced protein sequence. Investigation of mRNA expression by qPCR and in situ hybridization revealed that cbln11gene is especially expressed in the non-sensory epithelium of the olfactory rosette at larval and adult stages. The expression of cbln11 mRNA was analysed by qPCR in the first generation (F0) of European sea bass broodstock exposed since larval stages to water pH of 8.0 (control) or 7.6 (predicted for year 2100) and in their offspring (F1) maintained in the environmental conditions of their parents. Our results showed that cbln11 mRNA expression level was lower in larvae exposed to OA then up-regulated at adult stage in the olfactory rosette of F0 and that this up-regulation is maintained under OA at larval and juvenile stages in F1. Overall, this work provides evidence of a transgenerational inheritance of OA-induced up-regulation of cbln11 gene expression in European sea bass. Further studies will investigate the potential immune function of cbln11 gene and the consequences of these regulations, as well as the possible implications in terms of fitness and adaptation to OA in European sea bass.


Asunto(s)
Lubina , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Animales , Lubina/genética , Lubina/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Agua de Mar
20.
Artículo en Inglés | MEDLINE | ID: mdl-19026759

RESUMEN

Long term cell cultures could be obtained from brains of adult sea bass (Dicentrarchus labrax) up to 5 days post mortem. On three different occasions, sea bass brain tissues were dissected, dispersed and cultured in Leibovitz's L-15 media supplemented with 10% fetal bovine serum. The resulting cellular preparations could be passaged within 2 or 3 weeks of growth. The neural cells derived from the first trial (SBB-W1) have now been passaged over 24 times within two years. These cells have been cryopreserved and thawed successfully. SBB-W1 cells are slow growing with doubling times requiring at least 7 days at 22 degrees C. These long term cell cultures could be grown in suspension as neurospheres that were immunopositive for nestin, a marker for neural stem cells, or grown as adherent monolayers displaying both glial and neural morphologies. Immunostaining with anti-glial fibrillary acidic protein (a glial marker) and anti-neurofilament (a neuronal marker), yielded positive staining in most cells, suggesting their possible identity as neural stem cells. Furthermore, Sox 2, a marker for neural stem cells, could be detected from these cell extracts as well as proliferating cell nuclear antigen, a marker for proliferating cells. SBB-W1 could be transfected using pEGFP-N1 indicating their viability and suitability as convenient models for neurophysiological or neurotoxicological studies.


Asunto(s)
Células Madre Adultas/fisiología , Lubina , Encéfalo/fisiología , Neuronas/fisiología , Células Madre Adultas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Separación Celular , Forma de la Célula , Criopreservación , Proteínas de Peces/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Proteínas de Filamentos Intermediarios/metabolismo , Cinética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA