Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Sci Food Agric ; 104(7): 4070-4082, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294231

RESUMEN

BACKGROUND: In wheat-derived bakery products, the quantity of free asparagine (fAsn) has been identified as a key factor in acrylamide (AA) formation. Based on this assumption, four varieties of common wheat (Triticum aestivum L.), Stromboli, Montecarlo, Sothys and Cosmic, selected for their different fAsn content inside the grain, were studied to evaluate their potential in the production of pizza with reduced AA levels. To this purpose, wholemeal and refined flours were obtained from each variety. RESULTS: The fAsn content ranged from 0.25 to 3.30 mmol kg-1, with higher values for wholemeal flours which also showed greater amount of ash, fibre and damaged starch than refined wheat flours. All types of flours were separately used to produce wood oven baked pizza base, according to the Traditional Speciality Guaranteed EU Regulation (97/2010). AA reduction in the range 47-68% was found for all the selected wheat cultivars, compared with a commercial flour, with significantly lower values registered when refined flour was used. Moreover, refined leavened dough samples showed decreased levels of fAsn and reducing sugars due to the fermentation activity of yeasts. Furthermore, it was confirmed that pizza made with wholemeal flours exhibited lower rapidly digestible starch (RDS) and rapidly available glucose (RAG) values compared to that prepared with the refined flour. CONCLUSION: This study clearly shows that a reduced asparagine content in wheat flour is a key factor in the mitigation of AA formation in pizza base. Unfortunately, at the same time, it is highlighted how it is necessary to sacrifice the beneficial effects of fibre intake, such as lowering the glycaemic index, in order to reduce AA. © 2024 Society of Chemical Industry.


Asunto(s)
Asparagina , Harina , Asparagina/química , Almidón , Triticum/química , Acrilamida/química , Madera , Pan
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982516

RESUMEN

Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42-), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 µM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution.


Asunto(s)
Selenio , Triticum , Humanos , Ácido Selénico , Triticum/metabolismo , Tetraploidía , Sulfatos/metabolismo , Selenio/metabolismo , Genotipo
3.
Theor Appl Genet ; 134(12): 4013-4024, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34477900

RESUMEN

KEY MESSAGE: The suppression of the HYD-1 gene by a TILLING approach increases the amount of ß-carotene in durum wheat kernel. Vitamin A deficiency is a major public health problem that affects numerous countries in the world. As humans are not able to synthesize vitamin A, it must be daily assimilated along with other micro- and macronutrients through the diet. Durum wheat is an important crop for Mediterranean countries and provides a discrete amount of nutrients, such as carbohydrates and proteins, but it is deficient in some essential micronutrients, including provitamin A. In the present work, a targeting induced local lesions in genomes strategy has been undertaken to obtain durum wheat genotypes biofortified in provitamin A. In detail, we focused on the suppression of the ß-carotene hydroxylase 1 (HYD1) genes, encoding enzymes involved in the redirection of ß-carotene toward the synthesis of the downstream xanthophylls (neoxanthin, violaxanthin and zeaxanthin). Expression analysis of genes involved in carotenoid biosynthesis revealed a reduction of the abundance of HYD1 transcripts greater than 50% in mutant grain compared to the control. The biochemical profiling of carotenoid in the wheat mutant genotypes highlighted a significant increase of more than 70% of ß-carotene compared to the wild-type sibling lines, with no change in lutein, α-carotene and zeaxanthin content. This study sheds new light on the molecular mechanism governing carotenoid biosynthesis in durum wheat and provides new genotypes that represent a good genetic resource for future breeding programs focused on the provitamin A biofortification through non-transgenic approaches.


Asunto(s)
Ingeniería Metabólica , Oxigenasas de Función Mixta/genética , Provitaminas/biosíntesis , Semillas/química , Triticum/genética , Vitamina A/biosíntesis , Carotenoides , Grano Comestible/química , Grano Comestible/genética , Alimentos Fortificados , Técnicas de Inactivación de Genes , Genotipo , Filogenia , Fitomejoramiento , Triticum/química , Xantófilas , Zeaxantinas/biosíntesis
4.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182791

RESUMEN

A bread wheat line (N11) and a disomic 2D(2R) substitution triticale line were crossed and backrossed four times. At each step electrophoretic selection for the seeds that possessed, simultaneously, the complete set of high molecular weight glutenin subunits of N11 and the two high molecular weight secalins of rye, present in the 2D(2R) line, was carried out. Molecular cytogenetic analyses of the BC4F8 generation revealed that the selection carried out produced a disomic addition line (2n = 44). The pair of additional chromosomes consisted of the long arm of chromosome 1R (1RL) from rye fused with the satellite body of the wheat chromosome 6B. Rheological analyses revealed that the dough obtained by the new addition line had higher quality characteristics when compared with the two parents. The role of the two additional high molecular weight secalins, present in the disomic addition line, in influencing improved dough characteristics is discussed.


Asunto(s)
Glútenes/genética , Secale/genética , Triticale/genética , Triticum/genética , Pan/análisis , Pan/normas , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Análisis Citogenético , Electroforesis en Gel de Poliacrilamida , Genoma de Planta , Glútenes/química , Hibridación Genética , Hibridación Fluorescente in Situ , Peso Molecular , Reología , Secale/química , Semillas/química , Semillas/genética , Triticale/química , Triticum/química
5.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823634

RESUMEN

Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker's asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.


Asunto(s)
Alérgenos/efectos adversos , Pan , Genes de Plantas , Interferencia de ARN , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Humanos , Hipersensibilidad/sangre , Inmunoglobulina E/metabolismo , Proteínas de Plantas/efectos adversos , Plantas Modificadas Genéticamente , Unión Proteica , Solubilidad , Transformación Genética , Triticum/crecimiento & desarrollo , alfa-Amilasas/metabolismo
6.
Theor Appl Genet ; 132(2): 419-429, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30426174

RESUMEN

KEY MESSAGE: Knocking down GW2 enhances grain size by regulating genes encoding the synthesis of cytokinin, gibberellin, starch and cell wall. Raising crop yield is a priority task in the light of the continuing growth of the world's population and the inexorable loss of arable land to urbanization. Here, the RNAi approach was taken to reduce the abundance of Grain Weight 2 (GW2) transcript in the durum wheat cultivar Svevo. The effect of the knockdown was to increase the grains' starch content by 10-40%, their width by 4-13% and their surface area by 3-5%. Transcriptomic profiling, based on a quantitative real-time PCR platform, revealed that the transcript abundance of genes encoding both cytokinin dehydrogenase 1 and the large subunit of ADP-glucose pyrophosphorylase was markedly increased in the transgenic lines, whereas that of the genes encoding cytokinin dehydrogenase 2 and gibberellin 3-oxidase was reduced. A proteomic analysis of the non-storage fraction extracted from mature grains detected that eleven proteins were differentially represented in the transgenic compared to wild-type grain: some of these were involved, or at least potentially involved, in cell wall development, suggesting a role of GW2 in the regulation of cell division in the wheat grain.


Asunto(s)
Genes de Plantas , Interferencia de ARN , Semillas/crecimiento & desarrollo , Triticum/genética , Pared Celular , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa-1-Fosfato Adenililtransferasa/genética , Oxigenasas de Función Mixta/genética , Oxidorreductasas/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Proteoma , Triticum/crecimiento & desarrollo
7.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739436

RESUMEN

Macro- and micronutrients, essential for the maintenance of human metabolism, are assimilated daily through the diet. Wheat and other major cereals are a good source of nutrients, such as carbohydrates and proteins, but cannot supply a sufficient amount of essential micronutrients, including provitamin A. As vitamin A deficiency (VAD) leads to several serious diseases throughout the world, the biofortification of a major staple crop, such as wheat, represents an effective way to preserve human health in developing countries. In the present work, a key enzyme involved in the branch of carotenoids pathway producing ß-carotene, lycopene epsilon cyclase, has been targeted by a Targeting Induced Local Lesions in Genomes (TILLING) approach in a "block strategy" perspective. The null mutant genotype showed a strong reduction in the expression of the lcyE gene and also interesting pleiotropic effects on an enzyme (ß-ring hydroxylase) acting downstream in the pathway. Biochemical profiling of carotenoids in the wheat mutant lines showed an increase of roughly 75% in ß-carotene in the grains of the complete mutant line compared with the control. In conclusion, we describe here the production and characterization of a new wheat line biofortified with provitamin A obtained through a nontransgenic approach, which also sheds new light on the molecular mechanism governing carotenoid biosynthesis in durum wheat.


Asunto(s)
Biofortificación , Ingeniería Genética , Triticum/genética , Triticum/metabolismo , Vitamina A/metabolismo , Alelos , Secuencia de Bases , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Marcación de Gen , Ingeniería Genética/métodos , Genómica/métodos , Humanos , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Mutación , Filogenia , Plantas Modificadas Genéticamente
8.
Plant Biotechnol J ; 16(10): 1723-1734, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29499105

RESUMEN

Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways.


Asunto(s)
Amilosa/biosíntesis , Grano Comestible/metabolismo , Almidón Sintasa/genética , Triticum/genética , Endospermo/metabolismo , Mutación , Almidón Sintasa/metabolismo , Triticum/enzimología
9.
J Plant Res ; 131(3): 487-496, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29260339

RESUMEN

Starch synthase IIa, also known as starch granule protein 1 (SGP-1), plays a key role in amylopectin biosynthesis. The absence of SGP-1 in cereal grains is correlated to dramatic changes in the grains' starch content, structure, and composition. An extensive investigation of starch granule proteins in this study revealed a polymorphism in the electrophoretic mobility of SGP-1 between two species of wheat, Triticum urartu and T. monococcum; this protein was, however, conserved among all other Triticum species that share the A genome inherited from their progenitor T. urartu. Two different electrophoretic profiles were identified: SGP-A1 proteins of T. urartu accessions had a SDS-PAGE mobility similar to those of tetraploid and hexaploid wheat species; conversely, SGP-A1 proteins of T. monococcum ssp. monococcum and ssp. boeoticum accessions showed a different electrophoretic mobility. The entire coding region of the two genes was isolated and sequenced in an attempt to explain the polymorphism identified. Several single nucleotide polymorphisms (SNPs) responsible for amino acid changes were identified, but no indel polymorphism was observed to explain the difference in electrophoretic mobility. Amylose content did not differ significantly among T. urartu, T. monococcum ssp. boeoticum and T. monococcum ssp. monococcum, except in one accession of the ssp. boeoticum. Conversely, several interspecific differences were observed in viscosity properties (investigated as viscosity profiles using a rapid visco analyzer-RVA profiles) of these cereal grains. T. monococcum ssp. boeoticum accessions had the lowest RVA profiles, T. urartu accessions had an intermediate RVA profile, whereas T. monococcum ssp. monococcum showed the highest RVA profile. These differences could be associated with the numerous amino acid and structural changes evident among the SGP-1 proteins.


Asunto(s)
Genoma de Planta/genética , Proteínas de Plantas/genética , Poaceae/enzimología , Almidón Sintasa/genética , Triticum/enzimología , Diploidia , Modelos Estructurales , Filogenia , Proteínas de Plantas/química , Poaceae/genética , Polimorfismo Genético , Análisis de Secuencia de ADN , Almidón/metabolismo , Almidón Sintasa/química , Triticum/genética
10.
BMC Plant Biol ; 17(1): 248, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258439

RESUMEN

BACKGROUND: Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. RESULTS: Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (-75.6% respect to the cv. Pegaso) and a minor level of transcripts (-80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. CONCLUSION: The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less "toxic" wheat varieties.


Asunto(s)
Epítopos/inmunología , Gliadina/genética , Gliadina/inmunología , Triticum/genética , Enfermedad Celíaca/inducido químicamente , Gliadina/química , Humanos , Filogenia , Análisis de Secuencia de Proteína , Triticum/crecimiento & desarrollo , Triticum/metabolismo
11.
Breed Sci ; 66(4): 572-579, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27795682

RESUMEN

Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and ß-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, ß-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and ß-glucans biosynthesis.

12.
BMC Plant Biol ; 14: 64, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24629124

RESUMEN

BACKGROUND: Wheat glutenin polymers are made up of two main subunit types, the high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. These latter are represented by heterogeneous proteins. The most common, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types. The mature sequences differ as a consequence of three extra amino acids (MET-) at the N-terminus of LMW-m types. The nucleotide sequences of their encoding genes are, however, nearly identical, so that the relationship between gene and protein sequences is difficult to ascertain.It has been hypothesized that the presence of an asparagine residue in position 23 of the complete coding sequence for the LMW-s type might account for the observed three-residue shortened sequence, as a consequence of cleavage at the asparagine by an asparaginyl endopeptidase. RESULTS: We performed site-directed mutagenesis of a LMW-s gene to replace asparagine at position 23 with threonine and thus convert it to a candidate LMW-m type gene. Similarly, a candidate LMW-m type gene was mutated at position 23 to replace threonine with asparagine. Next, we produced transgenic durum wheat (cultivar Svevo) lines by introducing the mutated versions of the LMW-m and LMW-s genes, along with the wild type counterpart of the LMW-m gene.Proteomic comparisons between the transgenic and null segregant plants enabled identification of transgenic proteins by mass spectrometry analyses and Edman N-terminal sequencing. CONCLUSIONS: Our results show that the formation of LMW-s type relies on the presence of an asparagine residue close to the N-terminus generated by signal peptide cleavage, and that LMW-GS can be quantitatively processed most likely by vacuolar asparaginyl endoproteases, suggesting that those accumulated in the vacuole are not sequestered into stable aggregates that would hinder the action of proteolytic enzymes. Rather, whatever is the mechanism of glutenin polymer transport to the vacuole, the proteins remain available for proteolytic processing, and can be converted to the mature form by the removal of a short N-terminal sequence.


Asunto(s)
Asparagina/química , Endospermo/metabolismo , Glútenes/química , Glútenes/metabolismo , Triticum/metabolismo , Asparagina/fisiología , Endospermo/crecimiento & desarrollo , Peso Molecular , Mutagénesis Sitio-Dirigida , Triticum/crecimiento & desarrollo
13.
Pest Manag Sci ; 80(3): 1300-1313, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37903719

RESUMEN

BACKGROUD: Pseudomonas syringae pv. actinidiae (Psa), P. syringae pv. tomato (Pst) and P. savastanoi pv. savastanoi (Psav) are bacterial plant pathogens with worldwide impact that are mainly managed by the preventive application of cupric salts. These are dangerous for ecosystems and have favoured the selection of resistant strains, so they are candidates to be replaced in the next few years. Thus, there is an urgent need to find efficient and bio-based solutions to mitigate these bacterial plant diseases. Nanotechnology could represent an innovative way to control plant diseases, providing alternative solutions to the agrochemicals traditionally employed, thanks to the formulation of the so-called third-generation and nanotechnology-based agrochemicals. RESULTS: In this work, a novel nanostructured formulation (NPF) composed of cellulose nanocrystals (CNC) as carrier, high amylose starch (HAS) as excipient, and chitosan (CH) and gallic acid (GA) as antimicrobials, was tested at 2% in vitro and in vivo with respect to the three different Pseudomonas plant pathogens. In vitro agar assays demonstrated that the NPF inhibited ≤80% Psa, Pst and Psav. Moreover, the NPF did not decrease biofilm synthesis and it did not influence bacterial cells flocculation and adhesion. On plants, the NPF displayed complete biocompatibility and boosted the transcript levels of the major systemic acquired resistance responsive genes in kiwifruit and olive plants. CONCLUSION: This works provides novel and valuable information regarding the several modes-of-action of the novel NPF, which could potentially be useful to mitigate Psa, Pst and Psav infections even in organic agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Quitosano , Olea , Pseudomonas syringae , Olea/microbiología , Ecosistema , Antibacterianos , Agroquímicos , Enfermedades de las Plantas/microbiología
14.
Foods ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38890960

RESUMEN

An increasing number of individuals are eating out due to work and study commitments. This trend directly influences people's food choices, especially those who frequently rely on snacks and pre-packaged foods. Consuming these foods can lead to long-term health consequences. Adding functional foods to vending machines could lead to healthier choices. Our aim is to evaluate the acceptability and willingness to pay (WTP) of workers and students for a snack pack of novel functional biscuits (FBs) made with high amylose contents. We found that the experimental flour used is effective in preventing various non-communicable diseases; two phases of analysis were carried out on 209 participants. The participants blindly tested the products and only after the sensory evaluation were they informed about the biscuits' health contents. Firstly, the blind investigation highlighted the acceptability of the FBs compared to the conventional biscuits. Secondly, the finite mixture model on WTP revealed that some consumers are interested in the health benefits associated with high-amylose test blends and others are focused on hedonistic taste. The design of a communication strategy and industry approach should aim to assist consumers in comprehending the health benefits and sensory aspects of novel functional foods available on the market.

16.
Plants (Basel) ; 13(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475588

RESUMEN

The criteria of "Distinctness, Uniformity and Stability" as well as a high "overall quality index" are used to register the Italian modern varieties to the national register. Differently, local conservation varieties can be certified under different EU Directives that facilitate, as an overall objective, the preservation of biodiversity and the containment of genetic erosion. In recent years, products derived from ancient grains are perceived to be healthier and more sustainable by consumers, especially in Italy, with consequent higher market prices. The ancient tetraploid wheat varieties registered in the national register of conservation varieties amount to 28, 24 of which are Sicilian. They are supposed to have wide genetic variability compared to modern ones, making them vulnerable to fraud because they are difficult to trace. It is therefore important to have tools able to discriminate between autochthonous Sicilian varieties. This can be completed by gluten proteins composition, which also provides information on the technological properties of derived products. Fifty-one accessions belonging to twenty-two ancient varieties of Sicilian tetraploid (mostly durum) wheat were analyzed. Although wide intra-accession and intra-varietal variability measurements were assessed, the gliadin pattern of bulks of seeds belonging to each variety was discriminatory. Moreover, differences in technological attitudes were found between landraces. This paves the way to use gluten protein patterns for traceability, allowing local farmers and producers to valorize their products and assure consumers regarding the transparency of the entire supply chain.

17.
Plant Physiol Biochem ; 207: 108354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219425

RESUMEN

Starch bioengineering in cereals has produced a plethora of genotypes with new nutritional and technological functionalities. Modulation of amylose content from 0 to 100% was inversely correlated with starch digestibility and promoted a lower glycemic index in food products. In wheat, starch mutants have been reported to exhibit various side effects, mainly related to the seed phenotype. However, little is known about the impact of altered amylose content and starch structure on plant metabolism. Here, three bread wheat starch mutant lines with extreme phenotypes in starch branching and amylose content were used to study plant responses to starch structural changes. Omics profiling of gene expression and metabolic patterns supported changes, confirmed by ultrastructural analysis in the chloroplast of the immature seeds. In detail, the identification of differentially expressed genes belonging to functional categories related to photosynthesis, chloroplast and thylakoid (e.g. CURT1), the alteration in the accumulation of photosynthesis-related compounds, and the chloroplast alterations (aberrant shape, grana stacking alteration, and increased number of plastoglobules) suggested that the modification of starch structure greatly affects starch turnover in the chloroplast, triggering oxidative stress (ROS accumulation) and premature tissue senescence. In conclusion, this study highlighted a correlation between starch structure and chloroplast functionality in the wheat kernel.


Asunto(s)
Amilosa , Triticum , Amilosa/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Mutación/genética , Cloroplastos/genética , Cloroplastos/metabolismo
18.
Foods ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275693

RESUMEN

Although the Med-Diet is a healthy diet model, it is affected by current dietary habits. Therefore, new foods with improved nutritional value should be developed to respond to the needs of people following the Med-Diet. This study was focused on developing high-ß-glucan flat bread (bazlama) with a relatively lower GI. A bread wheat (cv. Tosunbey) flour was enriched with the flour of a high-ß-glucan-content hull-less barley (cv. Chifaa) flour (15, 30, 45 and 60%) to develop a functional bazlama. The nutritional and technological properties of bazlama samples enriched with barley flour were compared with the ones produced from bread wheat. All of the barley flour-enriched bazlama samples had higher yellowness values (b*) than the control (both crumb and crust), which is generally preferred by the consumers. Texture results indicated that bazlama samples became harder with the increase in barley flour supplementation level. The results showed that 3 g of ß-glucan can be provided from the barley flour-enriched bazlama samples (at 45 and 60% levels), and this is the limit to carry health claims. The bazlama samples enriched with barley flour were richer in Mg, K, Mn, Fe, and Zn minerals than the control (100% Tosunbey flour). While the glycemic index (GI) of commercial bread wheat and Tosunbey bazlama samples were high (88.60% and 79.20%, respectively), GI values of the bazlama samples enriched with 60% (64.73) and 45% barley flour (68.65) were medium. The lower GI values of barley flour-enriched bazlama samples are probably due to the higher ß-glucan contents of the bazlama samples. Additionally, as the barley flour supplementation level of the bazlama samples increased, the phenolics and antioxidant capacities of free and bound extracts increased compared to bread wheat bazlama. The results indicated that hull-less barley (cv. Chifaa) with high ß-glucan content may be utilized at relatively higher levels (45 and 60%) to produce bazlama with improved nutritional properties.

19.
Foods ; 12(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38002170

RESUMEN

Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is a highly branched structure of α-1,4-chains linked by α-1,6-bonds. Variation of the amylose/amylopectin ratio has a profound effect on the starch properties which may impact the wheat technological and nutritional characteristics and their possible use in the food and non-food sector. In this work a set of genotypes, with a range of amylose from 14.9 to 57.8%, derived from the durum wheat cv. Svevo was characterised at biochemical and rheological level and used to produce pasta to better understand the role of amylose content in a common genetic background. A negative correlation was observed between amylose content and semolina swelling power, starch peak viscosity, and pasta stickiness. A worsening of the firmness was observed in the low amylose pasta compared to the control (cv. Svevo), whereas no difference was highlighted in the high amylose samples. The resistant starch was higher in the high amylose (HA) pasta compared to the control and low amylose (LA) pasta. Noteworthy, the extent of starch digestion was reduced in the HA pasta while the LA genotypes offered a higher starch digestion, suggesting other possible applications.

20.
Plants (Basel) ; 12(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986912

RESUMEN

Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA