Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Med Sci (Paris) ; 39 Hors série n° 1: 37-46, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975769

RESUMEN

The Schwartz-Jampel syndrome (SJS, OMIM #255800) is an ultra-rare genetic disease characterized by myotonic manifestations combined with bone and cartilage abnormalities. Following an autosomal recessive mode of inheritance, its prevalence is more significant in highly-inbred areas. The unraveling of the HSPG2 gene encoding a protein of the basal lamina enabled a better nosological delineation of the syndrome. The diagnosis is usually strongly suspected at the clinical level and then confirmed by molecular biology. To date, the treatment remains essentially symptomatic.


Title: Le syndrome de Schwartz-Jampel. Abstract: Le syndrome de Schwartz-Jampel (SJS, OMIM #255800) est une affection génétique ultra-rare définie par des manifestations myotoniques et des anomalies ostéo-articulaires. Transmis selon un mode autosomique récessif, sa prévalence est plus élevée dans les zones de forte endogamie. La découverte du gène HSPG2 codant une protéine de la lame basale a permis de mieux en délimiter les contours nosologiques. Le diagnostic est généralement très fortement suspecté cliniquement puis confirmé en biologie moléculaire. Le traitement reste à ce jour essentiellement symptomatique.


Asunto(s)
Osteocondrodisplasias , Humanos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Osteocondrodisplasias/tratamiento farmacológico , Patrón de Herencia , Mutación
2.
Genes (Basel) ; 14(5)2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37239314

RESUMEN

Metabolic myopathies are rare inherited disorders that deserve more attention from neurologists and pediatricians. Pompe disease and McArdle disease represent some of the most common diseases in clinical practice; however, other less common diseases are now better-known. In general the pathophysiology of metabolic myopathies needs to be better understood. Thanks to the advent of next-generation sequencing (NGS), genetic testing has replaced more invasive investigations and sophisticated enzymatic assays to reach a final diagnosis in many cases. The current diagnostic algorithms for metabolic myopathies have integrated this paradigm shift and restrict invasive investigations for complicated cases. Moreover, NGS contributes to the discovery of novel genes and proteins, providing new insights into muscle metabolism and pathophysiology. More importantly, a growing number of these conditions are amenable to therapeutic approaches such as diets of different kinds, exercise training protocols, and enzyme replacement therapy or gene therapy. Prevention and management-notably of rhabdomyolysis-are key to avoiding serious and potentially life-threatening complications and improving patients' quality of life. Although not devoid of limitations, the newborn screening programs that are currently mushrooming across the globe show that early intervention in metabolic myopathies is a key factor for better therapeutic efficacy and long-term prognosis. As a whole NGS has largely increased the diagnostic yield of metabolic myopathies, but more invasive but classical investigations are still critical when the genetic diagnosis is unclear or when it comes to optimizing the follow-up and care of these muscular disorders.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo V , Errores Innatos del Metabolismo , Enfermedades Musculares , Recién Nacido , Humanos , Calidad de Vida , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Errores Innatos del Metabolismo/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Neuromuscul Disord ; 33(10): 817-821, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37743183

RESUMEN

Early onset myopathies are a clinically and histologically heterogeneous monogenic diseases linked to approximately 90 genes. Molecular diagnosis is challenging, especially in patients with a mild phenotype. We describe a 26-year-old man with neonatal hypotonia, motor delay and seizures during infancy, and non-progressive, mild muscular weakness in adulthood. Serum Creatine kinase level was normal. Whole-body muscle MRI showed thin muscles, and brain MRI was unremarkable. A deltoid muscle biopsy showed glycogen storage. WGS revealed a de novo 1.4 Mb-deletion of chromosome 14, confirmed by Array-CGH. This microdeletion causes the loss of ten genes including RALGAPA1, encoding for RalA, a regulator of glucose transporter 4 (GLUT4) expression at the membrane of myofibers. GLUT4 was overexpressed in patient's muscle. Here we highlight the importance to search for chromosomal alterations in the diagnostic workup of early onset myopathies.


Asunto(s)
Glucógeno , Enfermedades Musculares , Masculino , Recién Nacido , Humanos , Adulto , Cromosomas Humanos Par 14 , Enfermedades Musculares/genética , Hipotonía Muscular/genética , Fenotipo , Proteínas del Tejido Nervioso/genética , Proteínas Activadoras de GTPasa/genética
4.
Front Neurol ; 12: 679881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867701

RESUMEN

Several MRI measures have been developed in the last couple of decades, providing a number of imaging biomarkers that can capture the complexity of the pathological processes occurring in multiple sclerosis (MS) brains. Such measures have provided more specific information on the heterogeneous pathologic substrate of MS-related tissue damage, being able to detect, and quantify the evolution of structural changes both within and outside focal lesions. In clinical practise, MRI is increasingly used in the MS field to help to assess patients during follow-up, guide treatment decisions and, importantly, predict the disease course. Moreover, the process of identifying new effective therapies for MS patients has been supported by the use of serial MRI examinations in order to sensitively detect the sub-clinical effects of disease-modifying treatments at an earlier stage than is possible using measures based on clinical disease activity. However, despite this has been largely demonstrated in the relapsing forms of MS, a poor understanding of the underlying pathologic mechanisms leading to either progression or tissue repair in MS as well as the lack of sensitive outcome measures for the progressive phases of the disease and repair therapies makes the development of effective treatments a big challenge. Finally, the role of MRI biomarkers in the monitoring of disease activity and the assessment of treatment response in other inflammatory demyelinating diseases of the central nervous system, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte antibody disease (MOGAD) is still marginal, and advanced MRI studies have shown conflicting results. Against this background, this review focused on recently developed MRI measures, which were sensitive to pathological changes, and that could best contribute in the future to provide prognostic information and monitor patients with MS and other inflammatory demyelinating diseases, in particular, NMOSD and MOGAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA