Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(14): 9999-10010, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36960727

RESUMEN

The UV-induced photodissociation dynamics of iodomethane (CH3I) in its A-band are investigated by time-resolved coincident ion momentum imaging using strong-field ionization as a probe. The delay-dependent kinetic energy distribution of the photofragments resulting from double ionization of the molecule maps the cleavage of the carbon-iodine bond and shows how the existence of a potential well in the di-cationic potential energy surfaces shapes the observed distribution at small pump-probe delays. Furthermore, the competition between single- and multi-photon excitation and ionization of the molecule is studied as a function of the intensity of the UV-pump laser pulse. Two-photon excitation to Rydberg states is identified by tracking the transformation of the delay-dependent singly-charged iodomethane yield from a pure Gaussian distribution at low intensity to a Gaussian with an exponentially decaying tail at higher intensities. Dissociative ionization induced by absorption of three UV photons is resolved as an additional delay-dependent feature in the kinetic energy of the fragment ions detected in coincidence.

2.
Phys Chem Chem Phys ; 24(45): 27631-27644, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36321442

RESUMEN

We investigate the two- and three-body fragmentation of tribromomethane (bromoform, CHBr3) resulting from multiple ionization by 28-femtosecond near-infrared laser pulses with a peak intensity of 6 × 1014 W cm-2. The analysis focuses on channels consisting exclusively of ionic fragments, which are measured by coincidence momentum imaging. The dominant two-body fragmentation channel is found to be Br+ + CHBr2+. Weaker HBr+ + CBr2+, CHBr+ + Br2+, CHBr2+ + Br2+, and Br+ + CHBr22+ channels, some of which require bond rearrangement prior to or during the fragmentation, are also observed. The dominant three-body fragmentation channel is found to be Br+ + Br+ + CHBr+. This channel includes both concerted and sequential fragmentation pathways, which we identify using the native frames analysis method. We compare the measured kinetic energy release and momentum correlations with the results of classical Coulomb explosion simulations and discuss the possible isomerization of CHBr3 to BrCHBr-Br (iso-CHBr3) prior to the fragmentation.

3.
Nat Commun ; 15(1): 74, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168047

RESUMEN

An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+ formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.

4.
J Phys Chem Lett ; 13(25): 5845-5853, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35727076

RESUMEN

The Coulomb explosion of tribromomethane (bromoform, CHBr3) induced by 28 fs near-infrared laser pulses is investigated by three-dimensional coincidence ion momentum imaging. We focus on the fragmentation into three, four, and five ionic fragments measured in coincidence and present different ways of visualizing the three-dimensional momentum correlations. We show that the experimentally observed momentum correlations for 4- and 5-fold coincidences are well reproduced by classical Coulomb explosion simulations and contain information about the structure of the parent molecule that could be used to differentiate structural isomers formed, for example, in a pump-probe experiment. Our results thus provide a clear path toward visualizing structural dynamics in polyatomic molecules by strong-field-induced Coulomb explosion imaging.


Asunto(s)
Rayos Láser , Trihalometanos , Iones
5.
Nat Commun ; 13(1): 5146, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050308

RESUMEN

The double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics. Here in a combined experimental and theoretical study, we unambiguously separate the sequential breakup via D+ + OD+ intermediates, from other processes leading to the same D+ + D+ + O final products of double ionization of water by a single photon. Moreover, we experimentally identify, separate, and follow step by step, two pathways involving the b 1Σ+ and a 1Δ electronic states of the intermediate OD+ ion. Our classical trajectory calculations on the relevant potential energy surfaces reproduce well the measured data and, combined with the experiment, enable the determination of the internal energy and angular momentum distribution of the OD+ intermediate.

6.
J Phys Chem Lett ; 11(23): 10205-10211, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33206545

RESUMEN

Conformational isomerism plays a crucial role in defining the physical and chemical properties and biological activity of molecules ranging from simple organic compounds to complex biopolymers. However, it is often a significant challenge to differentiate and separate these isomers experimentally as they can easily interconvert due to their low rotational energy barrier. Here, we use the momentum correlation of fragment ions produced after inner-shell photoionization to distinguish conformational isomers of 1,2-dibromoethane (C2H4Br2). We demonstrate that the three-body breakup channel, C2H4+ + Br+ + Br+, contains signatures of both sequential and concerted breakup, which are decoupled to distinguish the geometries of two conformational isomers and to quantify their relative abundance. The sensitivity of our method to quantify these yields is established by measuring the relative abundance change with sample temperature, which agrees well with calculations. Our study paves the way for using Coulomb explosion imaging to track subtle molecular structural changes.


Asunto(s)
Dibromuro de Etileno/química , Teoría Funcional de la Densidad , Conformación Molecular , Procesos Fotoquímicos , Análisis Espectral , Estereoisomerismo
7.
Nat Commun ; 9(1): 5186, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518927

RESUMEN

Roaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H3+ formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H2 roaming prior to H3+ formation are uncovered. Despite the increased number of hydrogens and possible combinations leading to H3+ formation, the yield decreases as the carbon chain length increases. The fundamental mechanistic findings presented here explore the formation of H3+, the most important ion in interstellar chemistry, through H2 roaming occurring in ionic species.

8.
Sci Rep ; 7(1): 4703, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680157

RESUMEN

Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. We present evidence for the existence of two different reaction pathways for H3+ formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followed by the abstraction of a proton from the remaining CHOH2+ fragment by the roaming H2 molecule. This reaction has similarities to the H2 + H2+ mechanism leading to formation of H3+ in the universe. These exotic chemical reaction mechanisms, involving roaming H2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA