RESUMEN
Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.
Asunto(s)
Leucoencefalopatías , Enfermedades Neurodegenerativas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Ratones , Mutación/genética , Enfermedades Neurodegenerativas/patología , Neuroglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genéticaRESUMEN
Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.
Asunto(s)
Envejecimiento , Encéfalo , Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Microglía/patología , Microglía/metabolismo , Animales , Ratones , Envejecimiento/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Encéfalo/patología , Ratones Endogámicos C57BL , Masculino , Sustancia Blanca/patología , Leucoencefalopatías/patología , Tálamo/patologíaRESUMEN
Recent advances in diffusion imaging have given it the potential to non-invasively detect explicit neurobiological properties, beyond what was previously possible with conventional structural imaging. However, there is very little known about what cytoarchitectural properties these metrics, especially those derived from newer multi-shell models like Neurite Orientation Dispersion and Density Imaging (NODDI) correspond to. While these diffusion metrics do not promise any inherent cell type specificity, different brain cells have varying morphologies, which could influence the diffusion signal in distinct ways. This relationship is currently not well-characterized. Understanding the possible cytoarchitectural signatures of diffusion measures could allow them to estimate important neurobiological properties like cell counts, potentially resulting in a powerful clinical diagnostic tool. Here, using advanced diffusion imaging (NODDI) in the mouse brain, we demonstrate that different regions have unique relationships between cell counts and diffusion metrics. We take advantage of this exclusivity to introduce a framework to predict cell counts of different types of cells from the diffusion metrics alone, in a region-specific manner. We also outline the challenges of reliably developing such a model and discuss the precautions the field must take when trying to tie together medical imaging modalities and histology.
RESUMEN
BACKGROUND: Disease-associated microglia (DAMs), that surround beta-amyloid plaques, represent a transcriptionally-distinct microglial profile in Alzheimer's disease (AD). Activation of DAMs is dependent on triggering receptor expressed on myeloid cells 2 (TREM2) in mouse models and the AD TREM2-R47H risk variant reduces microglial activation and plaque association in human carriers. Interestingly, TREM2 has also been identified as a microglial lipid-sensor, and recent data indicates lipid droplet accumulation in aged microglia, that is in turn associated with a dysfunctional proinflammatory phenotype. However, whether lipid droplets (LDs) are present in human microglia in AD and how the R47H mutation affects this remains unknown. METHODS: To determine the impact of the TREM2 R47H mutation on human microglial function in vivo, we transplanted wild-type and isogenic TREM2-R47H iPSC-derived microglial progenitors into our recently developed chimeric Alzheimer mouse model. At 7 months of age scRNA-seq and histological analyses were performed. RESULTS: Here we report that the transcriptome of human wild-type TREM2 and isogenic TREM2-R47H DAM xenografted microglia (xMGs), isolated from chimeric AD mice, closely resembles that of human atherosclerotic foam cells. In addition, much like foam cells, plaque-bound xMGs are highly enriched in lipid droplets. Somewhat surprisingly and in contrast to a recent in vitro study, TREM2-R47H mutant xMGs exhibit an overall reduction in the accumulation of lipid droplets in vivo. Notably, TREM2-R47H xMGs also show overall reduced reactivity to plaques, including diminished plaque-proximity, reduced CD9 expression, and lower secretion of plaque-associated APOE. CONCLUSIONS: Altogether, these results indicate lipid droplet accumulation occurs in human DAM xMGs in AD, but is reduced in TREM2-R47H DAM xMGs, as it occurs secondary to TREM2-mediated changes in plaque proximity and reactivity.
Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Gotas Lipídicas/patología , Glicoproteínas de Membrana , Microglía/patología , Receptores Inmunológicos , Animales , Quimera , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Glicoproteínas de Membrana/genética , Ratones , Microglía/trasplante , Receptores Inmunológicos/genéticaRESUMEN
Inflammatory response against implanted biomaterials impairs their functional integration and induces medical complications in the host's body. To suppress such immune responses, one approach is the administration of multiple drugs to halt inflammatory pathways. This challenges patient's adherence and can cause additional complications such as infection. Alternatively, biologics that regulate multiple inflammatory pathways are attractive agents in addressing the implants immune complications. Secretome of mesenchymal stromal cells (MSCs) is a multipotent biologic, regulating the homeostasis of lymphocytes and leukocytes. Here, it is reported that alginate microcapsules loaded with processed conditioned media (pCM-Alg) reduces the infiltration and/or expression of CD68+ macrophages likely through the controlled release of pCM. In vitro cultures revealed that alginate can dose dependently induce macrophages to secrete TNFα, IL-6, IL-1ß, and GM-CSF. Addition of pCM to the cultures attenuates the secretion of TNFα (p = 0.023) and IL-6 (p < 0.0001) by alginate or lipopolysaccharide (LPS) stimulations. Mechanistically, pCM suppressed the NfκB pathway activation of macrophages in response to LPS (p < 0.0001) in vitro and cathepsin activity (p = 0.005) in response to alginate in vivo. These observations suggest the efficacy of using MSC-derived secretome to prevent or delay the host rejection of implants.
Asunto(s)
Materiales Biocompatibles , Células Madre Mesenquimatosas , Medios de Cultivo Condicionados/farmacología , Preparaciones de Acción Retardada , Humanos , LipopolisacáridosRESUMEN
The discovery of TREM2 as a myeloid-specific Alzheimer's disease (AD) risk gene has accelerated research into the role of microglia in AD. While TREM2 mouse models have provided critical insight, the normal and disease-associated functions of TREM2 in human microglia remain unclear. To examine this question, we profile microglia differentiated from isogenic, CRISPR-modified TREM2-knockout induced pluripotent stem cell (iPSC) lines. By combining transcriptomic and functional analyses with a chimeric AD mouse model, we find that TREM2 deletion reduces microglial survival, impairs phagocytosis of key substrates including APOE, and inhibits SDF-1α/CXCR4-mediated chemotaxis, culminating in an impaired response to beta-amyloid plaques in vivo. Single-cell sequencing of xenotransplanted human microglia further highlights a loss of disease-associated microglial (DAM) responses in human TREM2 knockout microglia that we validate by flow cytometry and immunohistochemistry. Taken together, these studies reveal both conserved and novel aspects of human TREM2 biology that likely play critical roles in the development and progression of AD.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Muerte Celular , Línea Celular , Quimiocina CXCL12/metabolismo , Quimiotaxis , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Fagocitosis , Placa Amiloide/metabolismo , Receptores CXCR4/metabolismo , TranscriptomaRESUMEN
Pathological tau correlates well with cognitive impairments in Alzheimer's disease (AD) patients and therefore represents a promising target for immunotherapy. Targeting an appropriate B cell epitope in pathological tau could in theory produce an effective reduction of pathology without disrupting the function of normal native tau. Recent data demonstrate that the N-terminal region of tau (aa 2-18), termed the "phosphatase activation domain (PAD)", is hidden within native Tau in a 'paperclip'-like conformation. Conversely, PAD is exposed in pathological tau and plays an essential role in the inhibition of fast axonal transport and tau polymerization. Thus, we hypothesized that anti-tau2-18 antibodies may safely and specifically reduce pathological tau and prevent further aggregation, which in turn would neutralize tau toxicity. Therefore, we evaluated the immunogenicity and therapeutic efficacy of our MultiTEP platform-based vaccine targeting tau2-18 formulated with AdvaxCpG adjuvant (AV-1980R/A) in PS19 tau transgenic mice. The AV-1980R/A induced extremely high antibody responses and the resulting sera recognized neurofibrillary tangles and plaque-associated dystrophic neurites in AD brain sections. In addition, under non-denaturing conditions AV-1980R/A sera preferentially recognized AD-associated tau. Importantly, vaccination also prevented age-related motor and cognitive deficits in PS19 mice and significantly reduced insoluble total and phosphorylated tau species. Taken together, these findings suggest that predominantly targeting misfolded tau with AV-1980R/A could represent an effective strategy for AD immunotherapy.