Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197082

RESUMEN

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Metabolismo de los Hidratos de Carbono/fisiología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Glucólisis/fisiología , Humanos , Ácido Hialurónico/fisiología , Hialuronoglucosaminidasa/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Tristetraprolina/metabolismo , Tristetraprolina/fisiología
2.
Nature ; 615(7953): 712-719, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922590

RESUMEN

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Metabolismo Energético , Neoplasias Pulmonares , Mitocondrias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/ultraestructura , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/ultraestructura , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Fenotipo , Tomografía de Emisión de Positrones
4.
Nature ; 575(7782): 380-384, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666695

RESUMEN

Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Neoplasias Pulmonares/fisiopatología , Potencial de la Membrana Mitocondrial , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Ratones Transgénicos , Compuestos Organofosforados , Tomografía de Emisión de Positrones
5.
EMBO J ; 38(22): e101056, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31609012

RESUMEN

The mitochondrial membrane potential (ΔΨm ) is the main driver of oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane (IMM), consisting of cristae and inner boundary membranes (IBM), is considered to carry a uniform ΔΨm . However, sequestration of OXPHOS components in cristae membranes necessitates a re-examination of the equipotential representation of the IMM. We developed an approach to monitor ΔΨm at the resolution of individual cristae. We found that the IMM was divided into segments with distinct ΔΨm , corresponding to cristae and IBM. ΔΨm was higher at cristae compared to IBM. Treatment with oligomycin increased, whereas FCCP decreased, ΔΨm heterogeneity along the IMM. Impairment of cristae structure through deletion of MICOS-complex components or Opa1 diminished this intramitochondrial heterogeneity of ΔΨm . Lastly, we determined that different cristae within the individual mitochondrion can have disparate membrane potentials and that interventions causing acute depolarization may affect some cristae while sparing others. Altogether, our data support a new model in which cristae within the same mitochondrion behave as independent bioenergetic units, preventing the failure of specific cristae from spreading dysfunction to the rest.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Mioblastos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Cultivadas , Femenino , Células HeLa , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mioblastos/citología , Fosforilación Oxidativa
6.
Nat Methods ; 16(6): 526-532, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31086341

RESUMEN

Glucose is a major source of energy for most living organisms, and its aberrant uptake is linked to many pathological conditions. However, our understanding of disease-associated glucose flux is limited owing to the lack of robust tools. To date, positron-emission tomography imaging remains the gold standard for measuring glucose uptake, and no optical tools exist for non-invasive longitudinal imaging of this important metabolite in in vivo settings. Here, we report the development of a bioluminescent glucose-uptake probe for real-time, non-invasive longitudinal imaging of glucose absorption both in vitro and in vivo. In addition, we demonstrate that the sensitivity of our method is comparable with that of commonly used 18F-FDG-positron-emission-tomography tracers and validate the bioluminescent glucose-uptake probe as a tool for the identification of new glucose transport inhibitors. The new imaging reagent enables a wide range of applications in the fields of metabolism and drug development.


Asunto(s)
Transportador de Glucosa de Tipo 1/fisiología , Glucosa/metabolismo , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Transporte Biológico , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Luciferasas/metabolismo , Ratones Noqueados , Ratones Desnudos , Neoplasias Experimentales/patología , Radiofármacos/metabolismo , Células Tumorales Cultivadas
7.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33507343

RESUMEN

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética
9.
Am J Respir Cell Mol Biol ; 58(2): 216-231, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28915065

RESUMEN

Hypoxia has long been implicated in the pathogenesis of fibrotic diseases. Aberrantly activated myofibroblasts are the primary pathological driver of fibrotic progression, yet how various microenvironmental influences, such as hypoxia, contribute to their sustained activation and differentiation is poorly understood. As a defining feature of hypoxia is its impact on cellular metabolism, we sought to investigate how hypoxia-induced metabolic reprogramming affects myofibroblast differentiation and fibrotic progression, and to test the preclinical efficacy of targeting glycolytic metabolism for the treatment of pulmonary fibrosis. Bleomycin-induced pulmonary fibrotic progression was evaluated in two independent, fibroblast-specific, promoter-driven, hypoxia-inducible factor (Hif) 1A knockout mouse models and in glycolytic inhibitor, dichloroacetate-treated mice. Genetic and pharmacological approaches were used to explicate the role of metabolic reprogramming in myofibroblast differentiation. Hypoxia significantly enhanced transforming growth factor-ß-induced myofibroblast differentiation through HIF-1α, whereas overexpression of the critical HIF-1α-mediated glycolytic switch, pyruvate dehydrogenase kinase 1 (PDK1) was sufficient to activate glycolysis and potentiate myofibroblast differentiation, even in the absence of HIF-1α. Inhibition of the HIF-1α/PDK1 axis by genomic deletion of Hif1A or pharmacological inhibition of PDK1 significantly attenuated bleomycin-induced pulmonary fibrosis. Our findings suggest that HIF-1α/PDK1-mediated glycolytic reprogramming is a critical metabolic alteration that acts to promote myofibroblast differentiation and fibrotic progression, and demonstrate that targeting glycolytic metabolism may prove to be a potential therapeutic strategy for the treatment of pulmonary fibrosis.


Asunto(s)
Hipoxia de la Célula/fisiología , Ácido Dicloroacético/farmacología , Glucólisis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fibrosis Pulmonar/patología , Animales , Bleomicina , Línea Celular , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Miofibroblastos/citología , Miofibroblastos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Interferencia de ARN , ARN Interferente Pequeño/genética
10.
Proc Natl Acad Sci U S A ; 111(7): 2554-9, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550282

RESUMEN

One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells. Cells lacking LKB1 display increased glucose and glutamine uptake and utilization, which support both cellular ATP levels and increased macromolecular biosynthesis. This LKB1-dependent reprogramming of cell metabolism is dependent on the hypoxia-inducible factor-1α (HIF-1α), which accumulates under normoxia in LKB1-deficient cells and is antagonized by inhibition of mTOR complex I signaling. Silencing HIF-1α reverses the metabolic advantages conferred by reduced LKB1 signaling and impairs the growth and survival of LKB1-deficient tumor cells under low-nutrient conditions. Together, our data implicate the tumor suppressor LKB1 as a central regulator of tumor metabolism and growth control through the regulation of HIF-1α-dependent metabolic reprogramming.


Asunto(s)
Metabolismo Energético/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Fibroblastos , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Redes y Vías Metabólicas/fisiología , Ratones , Complejos Multiproteicos/metabolismo , Consumo de Oxígeno/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Mol Cell ; 30(2): 214-26, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18439900

RESUMEN

AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Apoptosis , Ciclo Celular , Línea Celular , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos , Complejos Multienzimáticos/genética , Complejos Multiproteicos , Biblioteca de Péptidos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Proteína Reguladora Asociada a mTOR , Serina/metabolismo , Especificidad por Sustrato , Serina-Treonina Quinasas TOR , Factores de Transcripción/antagonistas & inhibidores
12.
Proc Natl Acad Sci U S A ; 110(15): E1352-60, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530221

RESUMEN

Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Ratones , Método de Montecarlo , Trasplante de Neoplasias , Neoplasias/genética , Proteómica/métodos
13.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955468

RESUMEN

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Asunto(s)
Citosol , Mitocondrias , Prohibitinas , ARN Bicatenario , ARN Mitocondrial , Humanos , Citosol/metabolismo , Mitocondrias/metabolismo , ARN Bicatenario/metabolismo , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , Línea Celular Tumoral , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transporte de ARN , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Mitocondriales
14.
Cancer Res Commun ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949950

RESUMEN

Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases. Myristoylation is emerging as a promising cancer therapeutic target, however the molecular determinants of sensitivity to N-myristoyltransferase inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that N-myristoyltransferases are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter Translocase of Inner Mitochondrial Membrane 17 homologue A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis N-myristoyltransferase-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas.

15.
J Carcinog ; 12: 16, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24082825

RESUMEN

The liver kinase B1 (LKB1) tumour suppressor functions as a master regulator of growth, metabolism and survival in cells, which is frequently mutated in sporadic human non-small cell lung and cervical cancers. LKB1 functions as a key upstream activator of the AMP-activated protein kinase (AMPK), a central metabolic switch found in all eukaryotes that govern glucose and lipid metabolism and autophagy in response to alterations in nutrients and intracellular energy levels. The LKB1/AMPK signalling pathway suppresses mammalian target of rapamycin complex 1 (mTORC1), an essential regulator of cell growth in all eukaryotes that is deregulated in a majority of human cancers. LKB1 inactivation in cancer leads to both tumorigenesis and metabolic deregulation through the AMPK and mTORC1-signalling axis and there remain critical challenges to elucidate the direct role LKB1 inactivation plays in driving aberrant metabolism and tumour growth. This review addresses past and current efforts to delineate the molecular mechanisms fueling metabolic deregulation and tumorigenesis following LKB1 inactivation as well as translational promise of therapeutic strategies aimed at targeting LKB1-deficient tumors.

16.
Proc Natl Acad Sci U S A ; 106(27): 11137-42, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19541609

RESUMEN

Peutz-Jeghers syndrome (PJS) is a familial cancer disorder due to inherited loss of function mutations in the LKB1/ STK11 serine/threonine kinase. PJS patients develop gastrointestinal hamartomas with 100% penetrance often in the second decade of life, and demonstrate an increased predisposition toward the development of a number of additional malignancies. Among mitogenic signaling pathways, the mammalian-target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in tissues and tumors derived from LKB1-deficient mice. Consistent with a central role for mTORC1 in these tumors, rapamycin as a single agent results in a dramatic suppression of preexisting GI polyps in LKB1+/- mice. However, the key targets of mTORC1 in LKB1-deficient tumors remain unknown. We demonstrate here that these polyps, and LKB1- and AMPK-deficient mouse embryonic fibroblasts, show dramatic up-regulation of the HIF-1alpha transcription factor and its downstream transcriptional targets in an rapamycin-suppressible manner. The HIF-1alpha targets hexokinase II and Glut1 are up-regulated in these polyps, and using FDG-PET, we demonstrate that LKB1+/- mice show increased glucose utilization in focal regions of their GI tract corresponding to these gastrointestinal hamartomas. Importantly, we demonstrate that polyps from human Peutz-Jeghers patients similarly exhibit up-regulated mTORC1 signaling, HIF-1alpha, and GLUT1 levels. Furthermore, like HIF-1alpha and its target genes, the FDG-PET signal in the GI tract of these mice is abolished by rapamycin treatment. These findings suggest a number of therapeutic modalities for the treatment and detection of hamartomas in PJS patients, and potential for the screening and treatment of the 30% of sporadic human lung cancers bearing LKB1 mutations.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Síndrome de Peutz-Jeghers/enzimología , Síndrome de Peutz-Jeghers/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glucosa/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Tomografía de Emisión de Positrones , Proteínas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Carga Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
Sci Rep ; 12(1): 3592, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246558

RESUMEN

Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life. Here, we present a novel polymer of poly(lactic-co-glycolic) acid and polyvinyl alcohol that can serve as a versatile multidrug delivery platform as well as for detection on cross-sectional imaging while functioning as a fiduciary marker for postoperative radiotherapy and radiotherapeutic dosing. In a mouse xenograft model, the dual-layered polymer composed of calcium carbonate/thymoquinone was used for both polymer localization and narrow-field infusion of a natural therapeutic compound. A similar approach can be applied in the treatment of head and neck cancer patients, where immunotherapy and traditional chemotherapy can be delivered simultaneously with independent release kinetics.


Asunto(s)
Neoplasias de Cabeza y Cuello , Polímeros , Animales , Quimioradioterapia Adyuvante , Neoplasias de Cabeza y Cuello/terapia , Humanos , Ratones , Polímeros/química , Calidad de Vida
18.
Nat Commun ; 13(1): 1090, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228570

RESUMEN

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética
19.
Cell Chem Biol ; 29(3): 423-435.e10, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34715056

RESUMEN

Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.


Asunto(s)
Ciclo del Ácido Cítrico , Neoplasias , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-34127512

RESUMEN

Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.


Asunto(s)
Adaptación Fisiológica/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Fenotipo , Microambiente Tumoral , Aminoácidos/análisis , Glucemia/análisis , Genes erbB-1/genética , Genes p53/genética , Humanos , Terapia Molecular Dirigida , Nucleótidos/metabolismo , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA