Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
FASEB J ; 37(10): e23184, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37698381

RESUMEN

Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1 kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value < .05). K-means analysis revealed cumulative protein changes by clusters of proteins that presented similar changes over time. Individual responses to training were observed in 101 proteins. Seven proteins had large effect-sizes >0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Proteoma , Masculino , Humanos , Lactante , Epigenoma , Estudios Longitudinales , Proteómica , Músculo Esquelético , Chaperonas Moleculares , Proteínas Mitocondriales
2.
J Proteome Res ; 22(9): 2890-2899, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584946

RESUMEN

Phosphoproteomics is nowadays the method of choice to comprehensively identify and quantify thousands of phosphorylated peptides and their associated proteins with the goal of interrogating changes in signal transduction pathways and other cellular processes. One of the most popular software suites to analyze phosphoproteomic data sets is MaxQuant, which converts mass spectrometric raw data into quantitative information on phosphopeptides and proteins. However, despite the increased utilization of phosphoproteomics in biomedical research, simple and user-friendly tools supporting downstream statistical analysis and interpretation of these highly complex outputs are still lacking. We have therefore developed Phospho-Analyst, which─similar to its sibling LFQ-Analyst─is an easy-to-use, interactive web application specifically designed to reproducibly perform differential expression analyses with "one click" and to visualize phosphoproteomic results in a meaningful and practical manner. Furthermore, if quantitative total proteomic information is available for the same samples, Phospho-Analyst automatically normalizes all phosphoproteomic results to underlying protein abundance levels, thereby ensuring that only genuine changes in phosphorylation events are considered. As such, Phospho-Analyst can not only be used by experienced proteomic veterans but also by researchers without any prior knowledge in (phospho)proteomics, statistics, or bioinformatics. Phospho-Analyst, including a detailed manual, is freely available at https://analyst-suites.org/apps/phospho-analyst/.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Programas Informáticos , Espectrometría de Masas/métodos , Fosforilación
3.
J Neuroinflammation ; 19(1): 291, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482407

RESUMEN

The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8-16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12-all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteómica , Humanos , Masculino , Femenino
4.
Bioinformatics ; 36(22-23): 5530-5532, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346827

RESUMEN

SUMMARY: Unbiased detection of protein-protein and protein-RNA interactions within ribonucleoprotein complexes are enabled through crosslinking followed by mass spectrometry. Yet, different methods detect different types of molecular interactions and therefore require the usage of different software packages with limited compatibility. We present crisscrosslinkeR, an R package that maps both protein-protein and protein-RNA interactions detected by different types of approaches for crosslinking with mass spectrometry. crisscrosslinkeR produces output files that are compatible with visualization using popular software packages for the generation of publication-quality figures. AVAILABILITY AND IMPLEMENTATION: crisscrosslinkeR is a free and open-source package, available through GitHub: github.com/egmg726/crisscrosslinker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Mol Ecol ; 31(16): 4319-4331, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35762848

RESUMEN

After gastrulation, oviductal hypoxia maintains turtle embryos in an arrested state prior to oviposition. Subsequent exposure to atmospheric oxygen upon oviposition initiates recommencement of embryonic development. Arrest can be artificially extended for several days after oviposition by incubation of the egg under hypoxic conditions, with development recommencing in an apparently normal fashion after subsequent exposure to normoxia. To examine the transcriptomic events associated with embryonic arrest in green sea turtles (Chelonia mydas), RNA-sequencing analysis was performed on embryos from freshly laid eggs and eggs incubated in either normoxia (oxygen tension ~159 mmHg) or hypoxia (<8 mmHg) for 36 h after oviposition (n = 5 per group). The patterns of gene expression differed markedly among the three experimental groups. Normal embryonic development in normoxia was associated with upregulation of genes involved in DNA replication, the cell cycle, and mitosis, but these genes were commonly downregulated after incubation in hypoxia. Many target genes of hypoxia inducible factors, including the gene encoding insulin-like growth factor binding protein 1 (igfbp1), were downregulated by normoxic incubation but upregulated by incubation in hypoxia. Notably, some of the transcriptomic effects of hypoxia in green turtle embryos resembled those reported to be associated with hypoxia-induced embryonic arrest in diverse taxa, including the nematode Caenorhabditis elegans and zebrafish (Danio rerio). Hypoxia-induced preovipositional embryonic arrest appears to be a unique adaptation of turtles. However, our findings accord with the proposition that the mechanisms underlying hypoxia-induced embryonic arrest per se are highly conserved across diverse taxa.


Asunto(s)
Tortugas , Animales , Femenino , Hipoxia , Oxígeno/metabolismo , Transcriptoma/genética , Tortugas/genética , Pez Cebra
6.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682742

RESUMEN

Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Animales , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Lisina , Proteómica , Ratas , Convulsiones/metabolismo
7.
J Biol Chem ; 295(19): 6518-6531, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32241914

RESUMEN

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein-coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.


Asunto(s)
Fosfoproteínas/metabolismo , Proteómica , Receptores CCR2/metabolismo , Transducción de Señal , Ontología de Genes , Células HEK293 , Humanos , Fosforilación
8.
Neurobiol Dis ; 148: 105151, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127468

RESUMEN

A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.


Asunto(s)
Conducta Animal , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Animales , Ansiedad , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Locomoción , Imagen por Resonancia Magnética , Proteínas de Neurofilamentos/sangre , Proteómica , Ratas , Recurrencia , Memoria Espacial , Sustancia Blanca/diagnóstico por imagen
9.
Nucleic Acids Res ; 47(D1): D459-D463, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30329070

RESUMEN

Cellular membranes feature dynamic submicrometer-scale lateral domains termed lipid rafts, membrane rafts or glycosphingolipid-enriched microdomains (GEM). Numerous proteomics studies have been conducted on the lipid raft proteome, however, interpretation of individual studies is limited by potential undefined contaminant proteins. To enable integrated analyses, we previously developed RaftProt (http://lipid-raft-database.di.uq.edu.au/), a searchable database of mammalian lipid raft-associated proteins. Despite being a highly used resource, further developments in annotation and utilities were required. Here, we present RaftProt V2 (http://raftprot.org), an improved update of RaftProt. Besides the addition of new datasets and re-mapping of all entries to both UniProt and UniRef IDs, we have implemented a stringent annotation based on experimental evidence level to assist in identification of possible contaminant proteins. RaftProt V2 allows for simultaneous search of multiple proteins/experiments at the cell/tissue type and UniRef/Gene level, where correlations, interactions or overlaps can be investigated. The web-interface has been completely re-designed to enable interactive data and subset selection, correlation analysis and network visualization. Overall, RaftProt aims to advance our understanding of lipid raft function through integrative analysis of datasets collected from diverse tissue and conditions. Database URL: http://raftprot.org.


Asunto(s)
Bases de Datos de Proteínas , Microdominios de Membrana , Proteínas de la Membrana/fisiología , Animales , Humanos , Proteínas de la Membrana/genética , Ratones , Proteoma , Proteómica , Ratas
10.
J Proteome Res ; 19(1): 204-211, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657565

RESUMEN

Relative label-free quantification (LFQ) of shotgun proteomics data using precursor (MS1) signal intensities is one of the most commonly used applications to comprehensively and globally quantify proteins across biological samples and conditions. Due to the popularity of this technique, several software packages, such as the popular software suite MaxQuant, have been developed to extract, analyze, and compare spectral features and to report quantitative information of peptides, proteins, and even post-translationally modified sites. However, there is still a lack of accessible tools for the interpretation and downstream statistical analysis of these complex data sets, in particular for researchers and biologists with no or only limited experience in proteomics, bioinformatics, and statistics. We have therefore created LFQ-Analyst, which is an easy-to-use, interactive web application developed to perform differential expression analysis with "one click" and to visualize label-free quantitative proteomic data sets preprocessed with MaxQuant. LFQ-Analyst provides a wealth of user-analytic features and offers numerous publication-quality result graphics to facilitate statistical and exploratory analysis of label-free quantitative data sets. LFQ-Analyst, including an in-depth user manual, is freely available at https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst .


Asunto(s)
Proteómica , Programas Informáticos , Biología Computacional , Péptidos , Proteínas
11.
J Proteome Res ; 15(10): 3451-3462, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384440

RESUMEN

Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.


Asunto(s)
Citoesqueleto/metabolismo , Microdominios de Membrana/química , Neoplasias/ultraestructura , Proteoma/análisis , Proteómica/métodos , Moléculas de Adhesión Celular , Línea Celular Tumoral , Membrana Celular , Simulación por Computador , Citoesqueleto/química , Progresión de la Enfermedad , Femenino , Proteínas Ligadas a GPI , Humanos , Microdominios de Membrana/metabolismo , Neoplasias/patología , Neoplasias Ováricas/patología , Neoplasias Ováricas/ultraestructura , Dominios y Motivos de Interacción de Proteínas
12.
Acta Physiol (Oxf) ; 240(3): e14095, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243724

RESUMEN

AIM: Physical exercise triggers the secretion of small extracellular vesicles (sEVs) into the circulation in humans, enabling signalling crosstalk between tissues. Exercise-derived EVs and their cargo have been proposed to mediate adaptations to exercise; however, our understanding of how exercise-derived EV protein cargo is modulated by factors such as aerobic fitness and age of an individual is currently unknown. Here, we examined the circulating sEV proteome following aerobic exercise in healthy males of different ages and aerobic fitness to understand exercise-induced EV response during the aging process. METHODS: Twenty-eight healthy men completed a bout of 20-min cycling exercise at 70% estimated VO2peak . Small EVs were isolated from blood samples collected before and immediately after exercise, and then quantified using particle analysis and Western blotting. Small EV proteome was examined using quantitative proteomic analysis. RESULTS: We identified a significant increase in 13 proteins in small plasma EVs following moderate-to-vigorous intensity exercise. We observed distinct changes in sEV proteome after exercise in young, mature, unfit, and fit individuals, highlighting the impact of aerobic fitness and age on sEV protein secretion. Functional enrichment and pathway analysis identified that the majority of the significantly altered sEV proteins are associated with the innate immune system, including proteins known to be damage-associated molecular patterns (DAMPs). CONCLUSION: Together, our findings suggest that exercise-evoked acute stress can positively challenge the innate immune system through the release of signalling molecules such as DAMPs in sEVs, proposing a novel EV-based mechanism for moderate-to-vigorous intensity exercise in immune surveillance pathways.


Asunto(s)
Vesículas Extracelulares , Proteoma , Masculino , Humanos , Proteómica , Ejercicio Físico , Inmunidad Innata
13.
Biol Sex Differ ; 14(1): 56, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670389

RESUMEN

BACKGROUND: Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS: We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS: Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS: We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.


Asunto(s)
Proteínas Musculares , Proteoma , Femenino , Masculino , Humanos , Músculo Esquelético , Ejercicio Físico , Metilación de ADN
14.
Elife ; 122023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892461

RESUMEN

There are no pharmacological disease-modifying treatments with an enduring effect to mitigate the seizures and comorbidities of established chronic temporal lobe epilepsy (TLE). This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, animals received sodium selenate, levetiracetam, or vehicle subcutaneousinfusion continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05), and sensorimotor deficits (p< 0.01). Moreover, selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/pre-clinical outcomes identified protein-metabolite modules positively correlated with TLE. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.


According to the World Health Organization (WHO), there are around 50 million people with epilepsy worldwide. Although drugs are available to control epileptic seizures, these only provide symptomatic relief. They cannot prevent the condition from worsening, and if people with epilepsy stop taking their medication, there is no lasting effect on the severity or frequency of their seizures. Some epilepsy cases are also resistant to these drugs. This is particularly common in adults with temporal epilepsy, with 30% of people continuing to suffer with seizures despite receiving medication. Current treatments also have no effect on problems with learning, memory and mental health that sometimes accompany drug-resistant epilepsy. Previous studies in animals have identified some potential treatments that could slow the progression of temporal epilepsy, but these have only been shown to work when used at a very early stage. Since most individuals with temporal epilepsy have already started having seizures when they are diagnosed (and it is difficult to predict who will develop the condition), these drugs are unlikely to be useful in practice. Here, Casillas-Espinosa et al. set out to find if a novel drug called sodium selenate can stop the progression of epilepsy and reduce the severity of temporal epilepsy when the condition is fully advanced. To do this, they used an animal model of temporal epilepsy, where rats had been modified to develop spontaneous seizures, resistance to normal anti-seizure medications, and problems with learning and memory. Casillas-Espinosa et al. found that sodium selenate not only reduced the number and severity of seizures in these model rats, but also improved their memory and learning ability. Several rats stopped having seizures altogether even after the treatment had stopped, indicating that sodium selenate had a long-lasting protective effect. Genetic analysis of the rats also revealed that shorter telomeres (special DNA sequences at the ends of chromosomes) correlated with increasing severity of the condition, suggesting that telomere length could help predict who might develop temporal epilepsy or respond best to treatment. This study identifies sodium selenate as a potential treatment that could reverse the progression of temporal epilepsy, even in individuals with advanced symptoms. Later this year, sodium selenate will be trialled in people with drug-resistant temporal epilepsy to determine if the drug benefits humans in the same way. Casillas-Espinosa et al. hope that it will improve participants' epilepsy and, ultimately, their quality of life.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Animales , Ácido Selénico/efectos adversos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Ratas Wistar , Convulsiones/tratamiento farmacológico , Epilepsia Refractaria/tratamiento farmacológico
15.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934086

RESUMEN

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Humanos , Antibacterianos/uso terapéutico , Proteómica , Sepsis/microbiología , Bacterias , Escherichia coli , Klebsiella , Pruebas de Sensibilidad Microbiana
16.
Pharmaceutics ; 14(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559296

RESUMEN

For peripherally administered drugs to reach the central nervous system (CNS) and treat amyotrophic lateral sclerosis (ALS), they must cross the blood-brain barrier (BBB). As mounting evidence suggests that the ultrastructure of the BBB is altered in individuals with ALS and in animal models of ALS (e.g., SOD1G93A mice), we characterized BBB transporter expression and function in transgenic C9orf72 BAC (C9-BAC) mice expressing a hexanucleotide repeat expansion, the most common genetic cause of ALS. Using an in situ transcardiac brain perfusion technique, we identified a 1.4-fold increase in 3H-2-deoxy-D-glucose transport across the BBB in C9-BAC transgenic (C9) mice, relative to wild-type (WT) mice, which was associated with a 1.3-fold increase in brain microvascular glucose transporter 1 expression, while other general BBB permeability processes (passive diffusion, efflux transporter function) remained unaffected. We also performed proteomic analysis on isolated brain microvascular endothelial cells, in which we noted a mild (14.3%) reduction in zonula occludens-1 abundance in C9 relative to WT mice. Functional enrichment analysis highlighted trends in changes to various BBB transporters and cellular metabolism. To our knowledge, this is the first study to demonstrate altered BBB function in a C9orf72 repeat expansion model of ALS, which has implications on how therapeutics may access the brain in this mouse model.

17.
Gigascience ; 112022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35254426

RESUMEN

BACKGROUND: Plasmodium falciparum causes the majority of malaria mortality worldwide, and the disease occurs during the asexual red blood cell (RBC) stage of infection. In the absence of an effective and available vaccine, and with increasing drug resistance, asexual RBC stage parasites are an important research focus. In recent years, mass spectrometry-based proteomics using data-dependent acquisition has been extensively used to understand the biochemical processes within the parasite. However, data-dependent acquisition is problematic for the detection of low-abundance proteins and proteome coverage and has poor run-to-run reproducibility. RESULTS: Here, we present a comprehensive P. falciparum-infected RBC (iRBC) spectral library to measure the abundance of 44,449 peptides from 3,113 P. falciparum and 1,617 RBC proteins using a data-independent acquisition mass spectrometric approach. The spectral library includes proteins expressed in the 3 morphologically distinct RBC stages (ring, trophozoite, schizont), the RBC compartment of trophozoite-iRBCs, and the cytosolic fraction from uninfected RBCs. This spectral library contains 87% of all P. falciparum proteins that have previously been reported with protein-level evidence in blood stages, as well as 692 previously unidentified proteins. The P. falciparum spectral library was successfully applied to generate semi-quantitative proteomics datasets that characterize the 3 distinct asexual parasite stages in RBCs, and compared artemisinin-resistant (Cam3.IIR539T) and artemisinin-sensitive (Cam3.IIrev) parasites. CONCLUSION: A reproducible, high-coverage proteomics spectral library and analysis method has been generated for investigating sets of proteins expressed in the iRBC stage of P. falciparum malaria. This will provide a foundation for an improved understanding of parasite biology, pathogenesis, drug mechanisms, and vaccine candidate discovery for malaria.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA