Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anal Chem ; 96(21): 8221-8233, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38740384

RESUMEN

Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Nanoestructuras/química , Enzimas/metabolismo , Enzimas/química
2.
Saudi Pharm J ; 31(12): 101877, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075546

RESUMEN

Utilizing multi-target drugs shows great promise as an effective strategy against polygenic diseases characterized by intricate patho-mechanisms, such as ulcers, skin dermatitis, and cancers. The current research centers around the creation of hybrid compounds, connecting dibenzazepine and isoxazole, with the aim of exploring their potential as inhibitors for urease and tyrosinase enzymes. Analogs 6a, 6b, 6d, 6 h-6j, and 6 l demonstrated strong inhibitory potential against tyrosinase enzyme with IC50 values of 4.32 ± 0.31-12.36 ± 0.48. Whereas analogs 6a, 6c, 6e, 6f, 6h-6m, and 6r exhibited potent inhibitory activities against urease enzyme with IC50 values of 3.67 ± 0.91-15.60 ± 0.18 µM. Furthermore, compounds 6i, 6n, and 6r showed weak toxic effect in BJ-cell line, whereas the remaining compounds were found non-toxic to normal cell line. The mechanistic studies of potent inhibitors of both the enzymes showed competitive mode of inhibition. Molecular docking was employed to establish the relationship between structure and activity and to elucidate the interaction mechanism. This analysis revealed that the active analogs exhibited crucial interactions with the active site residues of urease and tyrosinase, thus corroborating our experimental results. Hence, the generated derivatives of dibenzazepine-linked isoxazoles present intriguing starting points for further investigations into their potential as inhibitors of urease and tyrosinase, with the potential for future modification and enhancement.

3.
Biochem Biophys Res Commun ; 490(3): 889-894, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28648600

RESUMEN

We present here the biosynthesis of AgNps from the aqueous extract of H. thebaica fruit, and monitored through UV-Vis spectrophotometer. The functional group were characterized through ATR-FTIR spectroscopy, the particle size, morphologies and elemental composition of the nanoparticles were investigated by using TEM, FESEM and EDS respectively. The anti-proliferation activity of the synthesized AgNps was carried out using MTT assay on human prostate (PC3), breast (MCF7) and liver (HepG2) cancer cell lines. The anti-proliferation assay showed that the AgNps were able to inhibit the proliferation of the cancer cell lines in a dose depending manner. The effect was found more pronounced on prostate (IC50 2.6 mg/mL) followed by breast (IC50 4.8 mg/mL) and then liver cancer cell lines (IC50 6.8 mg/mL). The prepared AgNps were found to inhibit 99% growth of both E. coli and S. aureus after 24 h of incubation. The nanoparticles were used for the degradation of 4-nitrophenol (4-NP) and Congo red dyes (CR), which efficiently degrade CR, but make complex formation with 4-NP. Therefore, the AgNps synthesized from the aqueous fruit extract of H. thebaica have potential application in pharmacology and waste water treatment.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Arecaceae/química , Contaminantes Ambientales/aislamiento & purificación , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Colorantes/química , Colorantes/aislamiento & purificación , Rojo Congo/química , Rojo Congo/aislamiento & purificación , Contaminantes Ambientales/química , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Frutas/química , Humanos , Nanopartículas del Metal/ultraestructura , Neoplasias/tratamiento farmacológico , Nitrofenoles/química , Nitrofenoles/aislamiento & purificación , Oxidación-Reducción , Extractos Vegetales/química , Plata/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
4.
J Phys Chem A ; 120(1): 118-27, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26673943

RESUMEN

In the present study, a novel TiO2/Ti film with enhanced {001} facets was synthesized by the hydrothermal technique followed by calcination for studying the removal of bezafibrate (BZF), from an aqueous environment. The synthesized photocatalyst was characterized by FE-SEM, XRD, HR-TEM, and PL-technique. The second-order rate constant of (•)OH with BZF was found to be 5.66 × 10(9) M(-1) s(-1). The steady state [(•)OH] was measured as 1.16 × 10(-11) M, on the basis of oxidation of terephthalic acid. The photocatalytic degradation of BZF followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model (k1 = 2.617 mg L(-1) min(-1) and k2 = 0.0796 (mg L(-1))(-1)). The effects of concentration and the nature of various additives including inorganic anions (NO3(-), NO2(-), HCO3(-), CO3(2-), Cl(-)) and organic species (fulvic acid) and initial solution pHs (2, 4, 6, 9) on photocatalytic degradation of BZF were investigated. It was found that the nature and concentration of studied additives significantly affected the photocatalytic degradation of BZF. The efficiency of the photocatalytic degradation process in terms of electrical energy per order was estimated. Degradation schemes were proposed on the basis of the identified degradation byproducts by ultraperformance liquid chromatography.

5.
J Phys Chem A ; 120(50): 9916-9931, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27959545

RESUMEN

In this study, a novel immobilized TiO2/Ti film with exposed {001} facets was prepared via a facile one-pot hydrothermal route for the degradation of norfloxacin from aqueous media. The effects of various hydrothermal conditions (i.e., solution pH, hydrothermal time (HT) and HF concentration) on the growth of {001} faceted TiO2/Ti film were investigated. The maximum photocatalytic performance of {001} faceted TiO2/Ti film was observed when prepared at pH 2.62, HT of 3 h and at HF concentration of 0.02 M. The as-prepared {001} faceted TiO2/Ti films were fully characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), and X-ray photoelectron spectroscopy (XPS). More importantly, the as-prepared {001} faceted TiO2/Ti film exhibited excellent photocatalytic performance toward degradation of norfloxacin in various water matrices (Milli-Q water, tap water, river water and synthetic wastewater). The individual influence of various anions (SO42-, HCO3-, NO3-, Cl-) and cations (K+, Ca2+, Mg2+, Cu2+, Na+, Fe3+) usually present in the real water samples on the photocatalytic performance of as-prepared TiO2/Ti film with exposed {001} facet was investigated. The mechanistic studies revealed that •OH is mainly involved in the photocatalytic degradation of norfloxacin by {001} faceted TiO2/Ti film. In addition, norfloxacin degradation byproducts were investigated, on the basis of which degradation schemes were proposed.


Asunto(s)
Calor , Norfloxacino/química , Titanio/química , Catálisis , Estructura Molecular , Fotoquímica , Agua/química
6.
Int J Biol Macromol ; 260(Pt 1): 129376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262825

RESUMEN

Currently, hydrogel-based flexible devices become hot areas for scientists in the field of electronic devices, artificial intelligence, human motion detection, and electronic skin. These devices show responses to external stimuli (mechanical signals) and convert them into electrical signals (resistance, current, and voltage). However, the applications of the hydrogel-based sensor are hampered due to low mechanical properties, high time response, low fatigue resistance, low self-healing nature, and low sensing range. Herein, a strain sensing conductive hydrogel constructed from the CNCs (cellulose nanocrystal) reinforced, in which acrylamide and butyl acrylate work as hydrophilic and hydrophobic monomers respectively. The incorporation of CNCs in the polymeric system has a direct effect on their mechanical properties. The hydrogel having a high amount of CNCs (C4), its fracture stress and fracture strain reached 371.2 kPa and 2108 % respectively as well as self-healing of C4 hydrogel Broke at 499 % strain and bore 197 kPa stress. The elastic behavior of the hydrogels was confirmed by the rheological parameter frequency sweep and strain amplitude. Besides this our designed hydrogel shows an excellent response to deformation with conductivity 420 mS m-1, shows response to small strain (10 %) and large (400 %) strain, and has excellent anti-fatigue resistance with continuous stretching for 700 s at 300 % strain, with 140 msec response time, and gauge factor 7.4 at 750 % strain. The C4 hydrogel can also work as electronic skin when it is applied to different joints like the finger, elbow, neck, etc. The prepared hydrogel can also work as an electronic pen when it is worn to a plastic pen cover.


Asunto(s)
Celulosa , Hidrogeles , Humanos , Inteligencia Artificial , Conductividad Eléctrica , Cinacalcet , Electrónica
7.
ACS Omega ; 9(7): 7692-7704, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405485

RESUMEN

A novel adsorbent designated as terpolymer hydrogel (gellan gum-co-acrylamide-co-methacrylic acid) was prepared by free radical polymerization of gellan gum (GG), methacrylic acid (MAA), and acrylamide (AAm) using N,N-methylene bis-acrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as the initiator of the reaction. The synthesized gel was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA) and was used for the adsorptive removal of methyl violet (MV) and Fuchsin Basic (FB) dyes from aqueous solution. The effect of temperature, contact time, pH, and concentration on them under the study adsorption process was evaluated. Freundlich isotherm and pseudo-second-order kinetic models were found to be best in fitting the isothermal and kinetics data. The water diffusion and % swelling of hydrogel were studied at various pH in distilled water and at neutral pH in tap water. The diffusion was found to be of Fickian type with a maximum swelling of 5132%. The maximum adsorption capacity was 233 mg/g against MV and 200 mg/g against FB dyes. The swelling and adsorption were pH dependent and increased with increase in pH. The enthalpy, Gibbs free energy, and entropy changes of adsorption for both the dyes indicated the adsorption process to be exothermic, feasible, and spontaneous. The hydrogel was successfully regenerated using acetone and distilled water for five cycles and still, its dye removal efficiency was 80% of its original value. The poly(GG-co-AAm-co-MAA) hydrogel successfully removed the selected dyes from water and could thus be used as an efficient alternative sorbent for cationic dye removal from aqueous solutions.

8.
J Mater Chem B ; 12(25): 6190-6202, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38832839

RESUMEN

Metal organic frameworks (MOFs) have garnered significant attention in the development of stretchable and wearable conductive hydrogels for flexible transducers. However, MOFs used in hydrogel networks have been hampered by low mechanical performance and poor dispersibility in aqueous solutions, which affect the performance of hydrogels, including low toughness, limited self-recovery, short working ranges, low conductivity, and prolonged response-recovery times. To address these shortcomings, a novel approach was adopted in which micelle co-polymerization was used for the ex situ synthesis of Zn-MOF-based hydrogels with exceptional stretchability, robust toughness, anti-fatigue properties, and commendable conductivity. This breakthrough involved the ex situ integration of Zn-MOFs into hydrophobically cross-linked polymer chains. Here the micelles of EHDDAB had two functions, first they uniformly dispersed the Zn-MOFs and secondly they dynamically cross-linked the polymer chains, profoundly influencing the mechanical characteristics of the hydrogels. The non-covalent synergistic interactions introduced by Zn-MOFs endowed the hydrogels with the capacity for high stretchability, high stress, rapid self-recovery, anti-fatigue properties, and conductivity, all achieved without external stimuli. Furthermore, hydrogels based on Zn-MOFs can serve as durable and highly sensitive flexible transducers, adept at detecting diverse mechanical deformations with swift response-recovery times and high gauge factor values. Consequently, these hydrogels can be tailored to function as wearable strain sensors capable of sensing significant human joint movements, such as wrist bending, and motions involving the wrist, fingers, and elbows. Similarly, they excel at monitoring subtle human motions, such as speech pronunciation, distinguishing between different words, as well as detecting swallowing and larynx vibrations during various activities. Beyond these applications, the hydrogels exhibit proficiency in distinguishing and reproducing various written words with reliability. The Zn-MOF-based hydrogels hold promising potential for development in electronic skin, medical monitoring, soft robotics, and flexible touch panels.


Asunto(s)
Conductividad Eléctrica , Hidrogeles , Estructuras Metalorgánicas , Dispositivos Electrónicos Vestibles , Hidrogeles/química , Humanos , Estructuras Metalorgánicas/química , Zinc/química , Transductores
9.
Heliyon ; 10(4): e25836, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375313

RESUMEN

Most of the dyes used in various industries are non-biodegradable and carcinogenic in nature. Therefore, elimination of dyes from textile wastes is mandatory to safeguard the life of human, aquatic animals and aquatic plants. In this connection an effective and eco-friendly hydrogel was synthesized from acrylamide, cellulose, clay, and copper salt abbreviated as AMPS(PHE-Ce)/MC-Cu. The fabricated hydrogel was used as sorbent and catalyst for the adsorption and catalytic reduction of basic blue 3. SEM analysis showed granular texture with small holes or cracks which is basic criteria for an adsorbent surface. The results showed that the BET surface area and the Langmuir surface area were, respectively, 27.87 and 40.32 m2/g. The FTIR analysis confirmed the synthesis of hydrogel, as is evident from peaks at 3500, 3439, 2996, 2414, and 1650 cm-1, which indicated the presence of OH or NH, -C-O-C-, CH3, (C[bond, double bond]O), C-N bonds correspondingly. Thermal stability was confirmed by TGA analysis where weight loss in three stages has been observed. The presence of copper was confirmed through EDX (5.02%) indicating the incorporation of cupper nanoparticles in hydrogel surface. The high adsorption capability of 1590 mg/g as recorded for basic blue-3 dye indicates it to be an efficient adsorbent. The swelling behavior characterized by Fickian diffusion up to 7898% clearly indicated significant swelling. Pseudo 2nd-order kinetics and the Langmuir isotherm models were more fit in unfolding kinetics and isothermal data indicating chemisorption with monolayer sorption as evident from the high R2 values (0.999) of each model. Thermodynamics considerations indicated that the adsorption process is endothermic with a positive enthalpy value of 1371.32 Jmol-1. The positive entropy value of 19.70 J/mol.K signifies a higher degree of disorder at the solid-liquid interface. The findings provided a valuable insights into the hydrogel's capacity to adsorb cationic dyes and reduce them catalytically, pointing towards its potential applications in addressing environmental challenges.

10.
J Ethnopharmacol ; 319(Pt 3): 117368, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380570

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nyctanthes arbor-tristis Linn. has been used by Ayruvedic physicians for the cure of different diseases including ulcers, gastric and inflammatory diseases. AIM OF THE STUDY: To isolate and identify compounds from this source and investigate their therapeutic potential for the treatment of gastric ulcer and related disorders. MATERIAL AND METHODS: The ethanol extract of fresh aerial parts of N. arbor-tristis was used in the present studies which was subjected to a bio-assay guided fractionation followed by chromatographic separations. The structures of pure compounds were elucidated using various spectroscopic techniques. The inhibition of urease enzyme was evaluated by weatherburn indophenol method. Molecular docking studies were determined by using Molecular Operating Environment (MOE) version 2020.0901 version. The intracellular ROS production from phagocytes was determined by chemiluminescence assay and NO generation was detected by Griess method. The proinflammatory cytokine TNF-α was quantified by ELISA. Cytotoxic activity was assessed by MTT assay. RESULTS: One previously undescribed iridoid glycoside arborside F (1) and four known iridoid glycosides arborside A (2), arborside C (3), loganin (4) and 7-O-trans-cinnamoyl-6ß-hydroxyloganin (5) were isolated and characterized in the present studies and their urease inhibitory activity was determined. Among these, 2 and 5 showed strong urease inhibition (IC50 = 12.1 ± 1.74 and 14.1 ± 0.59 µM respectively) (standard acetohydroxamic acid IC50 = 20.3 ± 0.42 µM), whereas rest of compounds showed moderate to low inhibition. Kinetic studies revealed that compounds 2 and 5 possess competitive type of inhibition. Molecular docking showed polar and non-polar interactions of compounds 2 and 5 with urease enzyme residues. Compounds 2 and 3 showed inhibition of ROS from whole blood (IC50 = 1.6 ± 0.3 and 2.5 ± 0.09 µg/mL respectively) and PMNs (IC50 = 1.5 ± 0.03 and 1.4 ± 0.0 µg/mL respectively). Compound 2 significantly inhibited nitric oxide and proinflammatory cytokine TNF-α (IC50 = 18.2 ± 3.0 and 73.8 ± 6.6 µg/mL respectively). Compounds 1, 4 and 5 were inactive on ROS. All isolated compounds were non-toxic on normal mouse fibroblasts (NIH-3T3) cells. CONCLUSIONS: The ethno pharmacological repute of N. arbor-tristis in treating gastric and anti-inflammatory ailments is supported by present studies which resulted in isolation of a potent urease inhibitory and anti-inflammatory agent arborside A (2) a potential anti-ulcer and anti-inflammatory drug lead.


Asunto(s)
Extractos Vegetales , Ureasa , Ratones , Animales , Extractos Vegetales/uso terapéutico , Glicósidos Iridoides/farmacología , Cinética , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Antiinflamatorios/farmacología
11.
Heliyon ; 10(7): e28290, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689953

RESUMEN

In this work there was investigated the synergistic effect of the nanomaterials-the Montmorillonite (MMT) and the vanadium pentoxide (V2O5) on the polyvinyl alcohol (PVA)/starch composite. The composite films were prepared by the solvent casting method. The characterization of the composites showed that the addition of the MMT and the V2O5 to PVA/starch composite decreased the water solubility and water absorption capacity of the film. Both of the reinforcement materials enriched values of thermal conductivity and thermal stability of the composite. The TG/DTA and universal testing machine (UTM) analysis exhibited that MMT and V2O5 augmented the thermal robustness and tensile strength of composites and decreased the strain to break. It was also observed that greater MMT concentration accelerates mechanical strength deterioration of the film owing to agglomeration. The scanning electron microscopy (SEM) analysis reflected great change in the surface morphology of the films in the presence and absence of MMT and V2O5. This was due to the interaction amid constituents of the composite. The chemical interaction between the PVA, Starch, MMT and the V2O5 was also established via Fourier-transform infrared spectroscopy (FTIR) analysis, which revealed fluctuations in the absorbance position and intensity of the PVA/Starch. Antimicrobial activities against seven different cultures of bacteria (both-gram positive and -negative) and one fungus (Candida albicans), exposed that antimicrobial performance of the PVA amplified upon addition of the starch, MMT and V2O5, making these composites prospective candidates for the biodegradable packaging materials.

12.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225797

RESUMEN

The hyperactivity of urease enzymes plays a crucial role in the development of hepatic coma, hepatic encephalopathy, urolithiasis, gastric and peptic ulcers. Additionally, these enzymes adversely impact the soil's nitrogen efficiency for crop production. In the current study 100 known drugs were tested against Jack Bean urease and Proteus mirabilis urease and identified three inhibitors i.e. terbutaline (compound 1), Ketoprofen (compound 2) and norepinephrine bitartrate (compound 3). As a result, these compounds showed excellent inhibition against Jack Bean urease i.e. (IC50 = 2.1-11.3 µM), and Proteus mirabilis urease (4.8-11.9 µM). Moreover, in silico studies demonstrate maximum interactions of compounds in the enzyme's active site. Furthermore, intermolecular interactions between compounds and enzyme atoms were examined using STD-NMR spectrophotometry. In parallel, molecular dynamics simulation was carried out to study compounds dynamic behavior within the urease binding region. Urease remained stable during most of the simulation time and ligands were bound in the protein active pocket as observed from the Root mean square deviation (RMSD) and ligand RMSD analyses. Furthermore, these compounds display interactions with the crucial residues, including His492 and Asp633, in 100 ns simulations. In the binding energy analysis, norepinephrine bitartrate exhibited the highest binding energy (-76.32 kcal/mol) followed by Ketoprofen (-65.56 kcal/mol) and terbutaline (-62.15 kcal/mol), as compared to acetohydroxamic acid (-52.86 kcal/mol). The current findings highlight the potential of drug repurposing as an effective approach for identifying novel anti-urease compounds.Communicated by Ramaswamy H. Sarma.

13.
Int J Biol Macromol ; 246: 125666, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406904

RESUMEN

Hydrophobically associated conductive hydrogels got great attention due to their excellent properties like stretchability, energy dissipation mechanism, and strain sensor. But hydrophobically associated hydrogels have poor mechanical properties and time response to external stimuli. To enhance the mechanical properties and response to stimuli, Acrylamide- co-Butyl acrylate/Gum based conductive hydrogels were prepared. SDS works as a cross-linker and micelle-forming agent while NaCl makes hydrogel as conductive. The results show that our % strain sensing reached up to 400 %, and fracture stress and fracture strain reached to 0.5 MPa and 401 % respectively. Besides this, it's having an excellent response to continuous stretching and unstretching multiple cycles without any fracture up to 180 s and an excellent time response of 190 s. The conductivity of the hydrogel was 0.20 Sm-1. The hydrophobic hydrogels showed a clear and quick response to human motions like finger, wresting, writing, speaking, etc. Interestingly, our prepared hydrogels can detect the mood of the human face. Similarly, the hydrogels were found efficient in bridging the surface of electronic devices with human skin. This indicates that our prepared hydrogels can monitor human body motion and will replace the existing materials used in strain sensors in the near future.


Asunto(s)
Galactanos , Hidrogeles , Humanos , Mananos , Conductividad Eléctrica , Electrónica
14.
J Mech Behav Biomed Mater ; 138: 105610, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509014

RESUMEN

Conductive hydrogels attract the attention of researchers worldwide, especially in the field of flexible sensors like strain and pressure. These flexible materials have potential applications in the field of electronic skin, soft robotics, energy storage, and human motion detection. However, its practical application is limited due to low stretchability, high hysteresis energy, low conductivity, long-range strain sensitivity, and high response time. It's still a challenging job to endow all these properties in a single hydrogel network. In the present work, cellulose nano crystals (CNCs) reinforced hydrophobically associated gels were developed using APS as a source of radical polymerization, acrylamide and lauryl methacrylate were used as a monomer. CNCs reinforced the hydrophobically associated hydrogels through hydrogen bonding to retain the hydrogel's network structure. Hydrogels consist of dual crosslinking, which demonstrate exceptional mechanical performance (fracture stress and strain, toughness, and Young's modulus). The low hysteresis energy (10.9 kJm-3) and high conductivity (22.97 mS/cm) make the hydrogels a strong candidate for strain sensors with high sensitivity (GF = 19.25 at 700% strain) and a fast response time of 200 ms. Cyclic performance was also investigated up to 300 continuous cycles. After 300 cycles, the hydrogels were still stable and no considerable change was observed. These hydrogels are capable of sensing different human motions like wrist, finger bending, and neck (up-down and straight and right/left motion of neck). The hydrogels also demonstrate changes in current in response to swallowing, different speaking words, and writing different alphabets. These results suggest that our prepared materials can sense different small and large human motions, and also could be used in any electronic device where strain sensing is required.


Asunto(s)
Celulosa , Nanopartículas , Humanos , Polímeros , Hidrogeles , Movimiento (Física) , Cinacalcet , Conductividad Eléctrica
15.
Heliyon ; 9(9): e19780, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809951

RESUMEN

Textile effluent's treatment is highly desired due to the presence of hazardous, water-soluble and non-biodegradable dyes that not only have harmful effect on the environment but on living beings as well. Treatment of these pollutants by sorption through biosorbents is considered to be a best method of choice due to greener nature of the processes. In this connection hydrogel sorbents might be an intriguing option due to its straightforward application, great efficacy, easy synthesis, rapid turnaround, and potential of recycling. Herein, novel hydrogel was prepared using Gellan Gum and acrylic acid (GG-co-AAc) which were then characterized by instrumental techniques like UV/visible and FTIR spectroscopy, SEM, EDX and XRD. The anionic hydrogel's adsorption capacity, swelling behavior, and sorption potential were determined using Rhodamine-B as potential environmental pollutant. The hydrogel exhibited an impressive adsorption capacity of 1250 mg/g. Swelling experiments were performed in Milli-Q distilled water at different pH levels, reaching maximum swelling of 3230% after 23 h as determined through Fickian diffusion. At pH 7, the anionic hydrogel's sorption potential was thoroughly studied in the subsequent experiments. The adsorption process was found to follow the Langmuir isotherm, indicating a monolayer adsorption mechanism supported by higher R2 values compared to the Freundlich isotherm. Thermodynamic analysis revealed the exothermic nature of the adsorption process, with a negative enthalpy value of -11371 KJmol-1 and negative entropy value of -26.39 Jmol-1K-1, suggesting a less ordered system. These findings provide valuable insights into the adsorption characteristics and potential applications of the synthesized anionic hydrogel.

16.
Environ Technol ; 44(7): 911-920, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34586969

RESUMEN

Nitrate as an important water pollutant, causing eutrophication was analyzed in Pakistan at different water sources (hand pump (HP), bore hole (BH) and tube well (TW)) to assess the contamination level caused by NO3-. NO3- concentrations in the HP water samples were 31 mg L-1 to 59 mg L-1, in BH 20 mg L-1 to 79 mg L-1 while in TW water samples it was between 29 to 55 mg L-1. The association of NO3- with other selected parameter in groundwater can be determined by using statistical approaches. Different physicochemical parameters (pH, electrical conductivity (EC), temperature and dissolved oxygen (DO)) were studied in groundwater samples of the research district. The Pearson correlation coefficient (r) for groundwater characteristics were calculated. Hierarchical Cluster Analysis (HCA) was used to categorize samples based on their groundwater quality similarities and to find links between groundwater quality factors. The key relationship of the groundwater for HP samples on EC and TDS (r = 1) had a great correlation, while all other parameters correlations were lower (r = 0.40), BH's parameters on WT and WSD (r = 0.57), WT and pH (r = 0.57), EC and DO (r = 0.50), DO and TDS (0.50), EC and TDS (r = 1) had a quite high correlation, while all other parameters correlations were less than (r = 0.40), on the other hand, tube well parameters on TDS and EC (r = 1) had a perfect correlation, DO and pH (r = 0.75) parameters correlations were less than (r = 0.40).


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Calidad del Agua , Monitoreo del Ambiente , Agua Subterránea/análisis , Compuestos Orgánicos , Agua , Contaminantes Químicos del Agua/análisis
17.
RSC Adv ; 12(30): 19072-19085, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35865600

RESUMEN

Previously, solid-state electrode materials have been utilized for the fabrication of energy storage devices; however, their application is impeded by their brittle nature and ion mobility problems. To address issues faced in such a modern era where energy saving and utility is of prior importance, a novel approach has been applied for the preparation of electrode materials based on polyacrylamide hydrogels embedded with reduced graphene oxide and transition metals, namely, Cu2+ and Zn2+. The fabricated hydrogel exhibits high electrical properties and flexibility that make it a favorable candidate to be used in energy storage devices, where both elastic and electrical properties are desired. For the first time, a multi-cross-linked polyacrylamide hydrogel was constructed and compared in the presence of other electro-active materials such as reduced graphene oxide and transition metals. Polyacrylamide hydrogels embedded with reduced graphene oxide demonstrate excellent electrical properties such as specific capacitance, least impedance, low phase angle shift and AC conductivity of 22.92 F g-1, 2115 Ω, 2.88° and 0.67 µÎ´ m-1 respectively as compared to Cu2+- and Zn2+-loaded hydrogels, which block all available active sites causing an increase in impedance with a parallel decrease in capacitance. The capacitance retention and coulombic efficiency calculated were 88.22% and 77.23% respectively, indicating high stability up to 150 cycles at 0.1 A g-1. Storage moduli obtained were 10.52 kPa, which infers the more elastic nature of the hydrogel loaded with graphene oxide than that of other synthesized hydrogels.

18.
Front Nutr ; 9: 1031935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407542

RESUMEN

Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.

19.
Toxicol Rep ; 9: 204-209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169546

RESUMEN

This study aimed to investigate the nonclinical safety of lincomycin and spectinomycin hydrochloride (LC-SPH) intramuscular (i.m) doses on target animals (chickens) to provide guidelines for dose level design and side effect monitoring in clinical trials. A total of 80 healthy Arbor Acres plus broiler chicks were completely randomized and blindly divided into four treatment groups (control, one-time dose, three-time dose, and five-time dose) of 20 chicks each (20 chickens per group). At the age of day 15, all chickens (except the control group) were administered LC-SPH intramuscularly (chest muscles) at different doses of 20 mg/kg.bw, 60 mg/kg.bw, and 100 mg/kg.bw respectively for 9 consecutive days recommended by veterinary international cooperation on harmonization (VICH) guidelines. The chickens had ad libitum access to antibiotic-free feed and water. Feeding chickens were observed twice a day throughout the study. The drug safety was evaluated by complete blood count, biochemical parameters, histopathological, clinical signs, body weight gain, and feed conversion ratio (FCR). Hence, considering the minor toxicity of 60 mg/kg, our results reveal that intramuscular injection of at least 20 mg/kg body weight has no effects on growth performance, clinical blood parameters, organ coefficient, and histopathological parameters. Thus, a combination of LC-SPH 20 mg/kg body weight i.m injection investigated safe followed daily administration for nine consecutive days in healthy chickens. It is concluded that the experimental results support the safety of 20 mg/kg body weight in combination for the further clinical research study.

20.
Metabolites ; 12(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36557312

RESUMEN

Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA