Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Breed Sci ; 69(1): 169-178, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31086495

RESUMEN

Water stress, in a climate change scenario is one of the major threats for sustainable rice productivity. Combining drought resistance with yield and desirable economic traits is the most promising solution for the researchers. Although several studies resulted in the identification of QTLs for drought resistance in rice, but none of them serve as a milestone. Therefore, there is always a quest to find the new QTLs. The present investigation was carried out to map QTLs involved in drought resistance and yield related parameter in a cross of IR55419-04 and Super Basmati. An F2 population of 418 individuals was used as the mapping population. The raised nursery was transplanted in lyzimeters. Two extreme sets of tolerant (23 Nos.) and sensitive (23 Nos.) individuals were selected based on total water uptake under water stress conditions. Two hundred thirty microsatellite markers staggered on the whole genome were used for identifying polymorphic markers between the two parents. The selected 73 polymorphic microsatellites were used to genotype individuals and were scattered on a distance of 1735 cM on all 12 linkage groups. QTL analysis was performed by using the WinQTL Cartographer 2.5 V. A total of 21 QTLs were detected using composite interval mapping. The QTLs relating to drought tolerance at the vegetative stage were found on chromosome 1. Novel genomic regions were detected in the marker interval RM520-RM143 and RM168-RM520. The region has a significant QTL qTWU3.1 for total water uptake. Root morphological trait QTLs were found on chromosome 3. QTLs responsible for additive effects were due to the alleles of the IR55419-04. These novel QTLs can be used for marker assisted breeding to develop new drought-tolerant rice varieties and fine mapping can be used to explore the functional relationship between the QTLs and phenotypic traits.

2.
Microb Pathog ; 118: 154-158, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29571723

RESUMEN

Hepatitis C is a serious health issue and cause liver disorders in millions of people. Available therapeutic agents require long term administration with numerous side effects. Therefore, there is a dire need to find alternative treatment options for this disease. Since ancient times, medicinal plants are widely used to cure various diseases with no or less harmful effects. Therefore, this study was designed to find out phytochemicals and investigate antiviral activity of methanol extract of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus (HCV infection). Phytochemical analysis of the plant extract was performed using various chemical tests. Toxicity of the plant extract was determined against using trypan blue exclusion method. Antiviral activity of the selected plant extract was find out against HCV infected HepG2 cells. For this purpose, HepG2 cells were seeded with HCV positive and negative serum and nontoxic doses of plant extract for 24 and 48 h. After this RNA was extracted and viral load was determined using Real-time PCR. Phytochemical analysis showed the presence of flavonoids and phenols in all plant extracts while amino acids, alkaloids and tannins were present in B. lycium and saponins were detected in C. lemon. Toxicity assay showed that all plant extracts were nontoxic at maximum concentration of 200 µg/ml except B. lycium, which showed mild toxicity at 40 µg/ml and were extremely toxic at 60 µg/ml and above doses. Real-time PCR quantitation result revealed that after 24 h treatments A. parviflora showed highest antiviral activity, followed by A. bracteosa, while B. lycium extract had low (35%) and C. lemon has no antiviral effects. The 48 h treatments showed an increase antiviral activity by A. bracteosa followed by A. parviflora and B. lycium while C. lemon showed negative effect. Our results depicted that mentioned plants might be used as an alternative therapeutic regime or in combination with existing treatments against HCV.


Asunto(s)
Ajuga/química , Antivirales/farmacología , Berberis/química , Citrus/química , Hepacivirus/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Adulto , Anciano , Alcaloides/análisis , Aminoácidos/análisis , Proliferación Celular/efectos de los fármacos , Femenino , Flavonoides/análisis , Células Hep G2/efectos de los fármacos , Células Hep G2/virología , Hepatitis C/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Fenoles/análisis , Extractos Vegetales/química , Plantas Medicinales/química , Taninos/análisis , Carga Viral , Adulto Joven
3.
Environ Sci Pollut Res Int ; 30(44): 99273-99283, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37322395

RESUMEN

Volatile organic compounds (VOCs) such as formaldehyde and benzene are among the key contributors to indoor air pollution. The current situation of environmental pollution is alarming, especially indoor air pollution is becoming a challenge as affecting plants and humans. VOCs are known to adversely affect indoor plants by causing necrosis and chlorosis. In order to withstand these organic pollutants, plants are naturally equipped with an antioxidative defense system. The current research study aimed to evaluate the combined effect of formaldehyde and benzene on the antioxidative response of selected indoor C3 plants including Chlorophytum comosum, Dracaena mysore, and Ficus longifolia. After the combined application of different levels (0, 0; 2, 2; 2, 4; 4, 2; and 4, 4 ppm) of benzene and formaldehyde respectively, in an airtight glass chamber, the enzymatic and non-enzymatic antioxidants were analyzed. Analysis of total phenolics showed a significant increase (10.72 mg GAE/g) in F. longifolia; C. comosum (9.20 mg GAE/g); and D. mysore (8.74 mg GAE/g) compared to their respective controls as 3.76, 5.39, and 6.07 mg GAE/g. Total flavonoids (724 µg/g) were reported in control plants of F. longifolia which were increased to 1545.72 µg/g from 724 µg/g (in control) followed by 322.66 µg/g in D. mysore (control having 167.11 µg/g). Total carotenoid content also increased in D. mysore (0.67 mg/g) followed by C. comosum (0.63 mg/g) in response to increasing the combined dose compared to their control plants having 0.62 and 0.24 mg/g content. The highest proline content was exhibited by D. mysore (3.66 µg/g) as compared to its respective control plant (1.54 µg/g) under a 4 ppm dose of benzene and formaldehyde. A significant increase in enzymatic antioxidants including total antioxidants (87.89%), catalase (59.21 U/mg of protein), and guaiacol peroxidase (52.16 U/mg of protein) was observed in the D. mysore plant under a combined dose of benzene (2 ppm) and formaldehyde (4 ppm) with respect to their controls. Although experimental indoor plants have been reported to metabolize indoor pollutants, the current findings indicate that the combined application of benzene and formaldehyde is also affecting the physiology of indoor plants as well.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Humanos , Benceno/análisis , Contaminantes Atmosféricos/análisis , Antioxidantes/análisis , Formaldehído/análisis , Contaminación del Aire Interior/análisis , Compuestos Orgánicos Volátiles/análisis
4.
Curr Pharm Biotechnol ; 23(1): 158-170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33535946

RESUMEN

BACKGROUND AND PURPOSE: Carbon tetrachloride (CCl4) is a dynamic environmental toxin released from chemical factories and its concentration in the atmosphere is accelerating at an alarming proportion. The potential presence of CCl4 in the human body causes liver injury via free radical stimulated inflammatory responses. OBJECTIVES: In this study, protective effects of hydromethanolic seeds extract of Prunus persica (PPHM) were evaluated for free radical scavenging potential in CCl4 mediated acute liver toxicity in the murine model. EXPERIMENTAL APPROACH: Followed by acute oral toxicity analysis, liver cells of Sprague-Dawley (SD) rats were treated with CCl4 and subsequently, the chemoprophylactic effect of extract (400 mg/Kg dose) was evaluated using in vivo studies including, silymarin as the positive control. Biochemical parameters, staining (hematoxylin and eosin (H & E) and Masson's Trichome) and quantitative gene expression analysis via real-time PCR were used to evaluate hepatic damage control. RESULTS: The results illustrated that PPHM extract exhibit strong anti-oxidant activity, comparable to the positive control, gallic acid. Research study results also demonstrated that the extract treatment at 400 mg/Kg concentration is highly effective in protecting liver damage due to CCl4 exposure. Mechanistic investigations indicated that the therapeutic action of PPHM was correlated with the increase in Nrf2, NQO-1 and decrease in collagen III mRNA genes expression compared to CCl4 treated group. CONCLUSIONS AND IMPLICATIONS: Accordingly, our research study indicated that PPHM alleviated CCl4-mediated oxidative stress through Nrf2/NQO-1 pathway, thereby protecting liver damage against environmental toxins. Our findings provide supportive evidence to suggest PPHM as a novel nontoxic hepatoprotective agent.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Prunus persica , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/metabolismo , Ratones , Estrés Oxidativo , Fitoquímicos , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
5.
Front Genet ; 13: 822516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281797

RESUMEN

Multiple stress tolerance at the seed germination stage is crucial for better crop establishment in the direct-seeded rice ecosystem. Therefore, identifying rice genes/quantitative trait loci (QTLs) associated with salinity and anaerobic tolerance at the germination stage is a prerequisite for adaptive breeding. Here, we studied 498 highly diverse rice accessions Xian (Indica) and Geng (Japonica), and six traits that are highly associated with salinity and anaerobic tolerance at germination stage were measured. A high-density 2.8M Single Nucleotide Polymorphisms (SNP) genotype map generated from the 3,000 Rice Genomes Project (3KRGP) was used for mapping through a genome-wide association study. In total, 99 loci harboring 117 QTLs were detected in different populations, 54, 21, and 42 of which were associated with anaerobic, salinity, and combined (anaerobic and salinity) stress tolerance. Nineteen QTLs were close to the reported loci for abiotic stress tolerance, whereas two regions on chromosome 4 (qSGr4a/qCL4c/qRI4d and qAGr4/qSGr4b) and one region on chromosome 10 (qRI10/qCL10/ qSGr10b/qBM10) were associated with anaerobic and salinity related traits. Further haplotype analysis detected 25 promising candidates genes significantly associated with the target traits. Two known genes (OsMT2B and OsTPP7) significantly associated with grain yield and its related traits under saline and anaerobic stress conditions were identified. In this study, we identified the genes involved in auxin efflux (Os09g0491740) and transportation (Os01g0976100), whereas we identified multistress responses gene OsMT2B (Os01g0974200) and a major gene OsTPP7 (Os09g0369400) involved in anaerobic germination and coleoptile elongation on chromosome 9. These promising candidates provide valuable resources for validating potential salt and anaerobic tolerance genes and will facilitate direct-seeded rice breeding for salt and anaerobic tolerance through marker-assisted selection or gene editing.

6.
Front Genet ; 13: 955347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061203

RESUMEN

Grain appearance is one of the most important attributes of rice. It is determined by grain size, shape, and weight, which in turn influences the rice yield and market value. In this study, QTLs for grain length, grain width, grain length/width ratio, and grain weight were mapped using the high-throughput indica/indica SNP platforms. The population of the mega indica variety IR64 and the high-quality aromatic variety Sadri from Iran was phenotyped. Based on this phenotypic data, plants of 94 F2:3 families including both parents were selected. A linkage map analysis of 210 SNP markers identified 14 QTLs controlling the grain length, grain width, length/width ratio, and 1,000 grain weight. Among these 14, one important region containing the QTLs for all the four studies' traits was mapped on chromosome 8. It was derived from Sadri for the decreased length/width ratio and increased grain weight. This study demonstrated the speed and efficiency in using multiplex SNP genotyping for QTL analysis. Moreover, this study identified four novel QTLs (qGL8, qTGW8, qLWR8, and qGW8) sharing the same position on chromosome 8 which were linked with grain quality characteristics between one indica and one aromatic variety. It will enable more precise marker-assisted selection for grain weight, shape, and size. Further in-depth studies are required to dissect this region of interest and identify the related gene(s).

7.
Front Bioeng Biotechnol ; 8: 553037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072719

RESUMEN

The current study aimed to fabricate curcumin-loaded bacterial cellulose (BC-Cur) nanocomposite as a potential wound dressing for partial thickness burns by utilizing the therapeutic features of curcumin and unique structural, physico-chemical, and biological features of bacterial cellulose (BC). Characterization analyses confirmed the successful impregnation of curcumin into the BC matrix. Biocompatibility studies showed the better attachment and proliferation of fibroblast cells on the BC-Cur nanocomposite. The antibacterial potential of curcumin was tested against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), and Staphylococcus aureus (S. aureus). Wound healing analysis of partial-thickness burns in Balbc mice showed an accelerated wound closure up to 64.25% after 15 days in the BC-Cur nanocomposite treated group. Histological studies showed healthy granulation tissues, fine re-epithelialization, vascularization, and resurfacing of wound bed in the BC-Cur nanocomposite group. These results indicate that combining BC with curcumin significantly improved the healing pattern. Thus, it can be concluded that the fabricated biomaterial could provide a base for the development of promising alternatives for the conventional dressing system in treating burns.

8.
Biol Futur ; 70(4): 278-285, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34554545

RESUMEN

Tartary buckwheat, known for its rich source of health beneficial secondary metabolites, is cultivated in many areas of the world. Among different environmental factors, photoperiod strongly influence its growth, flowering time, and ultimately the yield. In this context, epigenetics could contribute significantly in the regulation of plant response against changing environment. Therefore, with the aim to study the involvement of DNA methylation in photoperiod mediated plant response, genome-wide DNA methylation analysis was performed in two accessions (A1 and A2) of Tartary buckwheat using three photoperiodic treatments, i.e., 10-hr light/day (T1), 12-hr light/day (T2), and 14-hr light/day (T3). Flowering time and plant fresh weight data revealed that accessions A1 and A2 prefer T1 and T2 treatments, respectively. Total DNA methylation ratio increased with the increase in photoperiod in accession A1 but decreased under same conditions in accession A2. Full methylation increased significantly while intensive decrease in hemimethylation was noted from T2 to T3 in A1, whereas full methylation strongly increased and hemimethylation strongly decreased from T1 to T2 in A2. Overall, the DNA methylation events appeared more frequently than demethylation events. This study reports for the first time an accession-/ genotype specific pattern of shift in the DNA methylation under different photoperiodic treatments that will pave the way toward identification of specific genes involved in the regulation of plant response against photoperiodic stress.

9.
Appl Biochem Biotechnol ; 186(2): 306-334, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29611134

RESUMEN

Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.


Asunto(s)
Fenómenos Fisiológicos de las Plantas/genética , Salinidad , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Desarrollo de la Planta , Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA