Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(4): 100746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447791

RESUMEN

Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.


Asunto(s)
Enfermedad de Huntington , Mitocondrias , Biosíntesis de Proteínas , Perfilado de Ribosomas , Humanos , Línea Celular , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Espectrometría de Masas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética
2.
J Biol Chem ; 300(4): 105778, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395307

RESUMEN

The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GßL (G protein ß-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GßL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GßL but not SUMOylation-defective KR mutant GßL promotes mTOR signaling in GßL-depleted cells. Taken together, we report for the very first time that SUMO modifies GßL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.


Asunto(s)
Transducción de Señal , Sumoilación , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Células HEK293 , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Homóloga LST8 de la Proteína Asociada al mTOR/metabolismo , Homóloga LST8 de la Proteína Asociada al mTOR/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Lisina/metabolismo
3.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589732

RESUMEN

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Asunto(s)
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/genética , Sumoilación , Expresión Génica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086928

RESUMEN

The CAG expansion of huntingtin (mHTT) associated with Huntington disease (HD) is a ubiquitously expressed gene, yet it prominently damages the striatum and cortex, followed by widespread peripheral defects as the disease progresses. However, the underlying mechanisms of neuronal vulnerability are unclear. Previous studies have shown that SUMO1 (small ubiquitin-like modifier-1) modification of mHtt promotes cellular toxicity, but the in vivo role and functions of SUMO1 in HD pathogenesis are unclear. Here, we report that SUMO1 deletion in Q175DN HD-het knockin mice (HD mice) prevented age-dependent HD-like motor and neurological impairments and suppressed the striatal atrophy and inflammatory response. SUMO1 deletion caused a drastic reduction in soluble mHtt levels and nuclear and extracellular mHtt inclusions while increasing cytoplasmic mHtt inclusions in the striatum of HD mice. SUMO1 deletion promoted autophagic activity, characterized by augmented interactions between mHtt inclusions and a lysosomal marker (LAMP1), increased LC3B- and LAMP1 interaction, and decreased interaction of sequestosome-1 (p62) and LAMP1 in DARPP-32-positive medium spiny neurons in HD mice. Depletion of SUMO1 in an HD cell model also diminished the mHtt levels and enhanced autophagy flux. In addition, the SUMOylation inhibitor ginkgolic acid strongly enhanced autophagy and diminished mHTT levels in human HD fibroblasts. These results indicate that SUMO is a critical therapeutic target in HD and that blocking SUMO may ameliorate HD pathogenesis by regulating autophagy activities.


Asunto(s)
Autofagia/fisiología , Enfermedad de Huntington/metabolismo , Proteína SUMO-1/metabolismo , Animales , Muerte Celular Autofágica/fisiología , Encéfalo/patología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Transgénicos , Neostriado/patología , Neuronas/patología , Proteína SUMO-1/genética , Proteína SUMO-1/fisiología
5.
Proc Natl Acad Sci U S A ; 117(27): 15989-15999, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581130

RESUMEN

Huntington disease (HD) is caused by an expansion mutation of the N-terminal polyglutamine of huntingtin (mHTT). mHTT is ubiquitously present, but it induces noticeable damage to the brain's striatum, thereby affecting motor, psychiatric, and cognitive functions. The striatal damage and progression of HD are associated with the inflammatory response; however, the underlying molecular mechanisms remain unclear. Here, we report that cGMP-AMP synthase (cGAS), a DNA sensor, is a critical regulator of inflammatory and autophagy responses in HD. Ribosome profiling revealed that the cGAS mRNA has high ribosome occupancy at exon 1 and codon-specific pauses at positions 171 (CCG) and 172 (CGT) in HD striatal cells. Moreover, the protein levels and activity of cGAS (based on the phosphorylated STING and phosphorylated TBK1 levels), and the expression and ribosome occupancy of cGAS-dependent inflammatory genes (Ccl5 and Cxcl10) are increased in HD striatum. Depletion of cGAS diminishes cGAS activity and decreases the expression of inflammatory genes while suppressing the up-regulation of autophagy in HD cells. In contrast, reinstating cGAS in cGAS-depleted HD cells activates cGAS activity and promotes inflammatory and autophagy responses. Ribosome profiling also revealed that LC3A and LC3B, the two major autophagy initiators, show altered ribosome occupancy in HD cells. We also detected the presence of numerous micronuclei, which are known to induce cGAS, in the cytoplasm of neurons derived from human HD embryonic stem cells. Collectively, our results indicate that cGAS is up-regulated in HD and mediates inflammatory and autophagy responses. Thus, targeting the cGAS pathway may offer therapeutic benefits in HD.


Asunto(s)
Autofagia/fisiología , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Animales , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Cuerpo Estriado/metabolismo , Células Madre Embrionarias , Humanos , Proteína Huntingtina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neostriado/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transcriptoma , Regulación hacia Arriba
6.
Proc Natl Acad Sci U S A ; 116(47): 23760-23771, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31676548

RESUMEN

Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨ m ) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨ m and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Animales , Línea Celular , Cuerpo Estriado/metabolismo , Proteínas de Unión al GTP/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Nitrocompuestos/farmacología , Propionatos/farmacología
7.
Hum Mol Genet ; 25(12): 2514-2524, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27206983

RESUMEN

p53 has been implicated in the pathophysiology of Huntington's disease (HD). Nonetheless, the molecular mechanism of how p53 may play a unique role in the pathology remains elusive. To address this question at the molecular and cellular biology levels, we initially screened differentially expressed molecules specifically dependent on p53 in a HD animal model. Among the candidate molecules, wild-type p53-induced gene 1 (Wig1) is markedly upregulated in the cerebral cortex of HD patients. Wig1 preferentially upregulates the level of mutant Huntingtin (Htt) compared with wild-type Htt. This allele-specific characteristic of Wig1 is likely to be explained by higher affinity binding to mutant Htt transcripts than normal counterpart for the stabilization. Knockdown of Wig1 level significantly ameliorates mutant Htt-elicited cytotoxicity and aggregate formation. Together, we propose that Wig1, a key p53 downstream molecule in HD condition, play an important role in stabilizing mutant Htt mRNA and thereby accelerating HD pathology in the mHtt-p53-Wig1 positive feedback manner.


Asunto(s)
Proteínas Portadoras/biosíntesis , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Nucleares/biosíntesis , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Animales , Autopsia , Proteínas Portadoras/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Enfermedad de Huntington/patología , Masculino , Ratones , Persona de Mediana Edad , Proteínas Mutantes/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Proteínas de Unión al ARN
8.
J Biol Chem ; 290(1): 56-64, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25391652

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays roles in both energy maintenance, and stress signaling by forming a protein complex with seven in absentia homolog 1 (Siah1). Mechanisms to coordinate its glycolytic and stress cascades are likely to be very important for survival and homeostatic control of any living organism. Here we report that apoptosis signal-regulating kinase 1 (ASK1), a representative stress kinase, interacts with both GAPDH and Siah1 and is likely able to phosphorylate Siah1 at specific amino acid residues (Thr-70/Thr-74 and Thr-235/Thr-239). Phosphorylation of Siah1 by ASK1 triggers GAPDH-Siah1 stress signaling and activates a key downstream target, p300 acetyltransferase in the nucleus. This novel mechanism, together with the established S-nitrosylation/oxidation of GAPDH at Cys-150, provides evidence of how the stress signaling involving GAPDH is finely regulated. In addition, the present results imply crosstalk between the ASK1 and GAPDH-Siah1 stress cascades.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Regulación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , MAP Quinasa Quinasa Quinasa 5/genética , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Estrés Oxidativo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Biol Chem ; 290(23): 14493-503, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25882840

RESUMEN

In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that translocates into the nucleus under oxidative/nitrosative stress both in vitro and in vivo. A well conserved amino acid at the N terminus of GAPDH determines its protein binding with PARP-1. Wild-type (WT) but not mutant GAPDH, that lacks the ability to bind PARP-1, can promote PARP-1 activation. Importantly, disrupting this interaction significantly diminishes PARP-1 overactivation and protects against both brain damage and neurological deficits induced by middle cerebral artery occlusion/reperfusion in a rat stroke model. Together, these findings suggest that nuclear GAPDH is a key regulator of PARP-1 activity, and its signaling underlies the pathology of oxidative/nitrosative stress-induced brain damage including stroke.


Asunto(s)
Encéfalo/patología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Encéfalo/metabolismo , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Activación Enzimática , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Humanos , Infarto de la Arteria Cerebral Media/enzimología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Nitrocompuestos/análisis , Nitrocompuestos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/análisis , Ratas , Ratas Wistar
10.
Proc Natl Acad Sci U S A ; 110(30): 12462-7, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23840059

RESUMEN

Guided by features of molecular, cellular, and circuit dysfunction affecting the prefrontal cortex in clinical investigations, we targeted prefrontal cortex in studies of a model for neuropsychiatric illness using transgenic mice expressing a putative dominant-negative disrupted in schizophrenia 1 (DN-DISC1). We detected marked augmentation of GAPDH-seven in absentia homolog Siah protein binding in the DISC1 mice, a major hallmark of a nuclear GAPDH cascade that is activated in response to oxidative stress. Furthermore, deficits were observed in well-defined tests for the cognitive control of adaptive behavior using reversal learning and reinforcer devaluation paradigms. These deficits occurred even though DN-DISC1 mice showed intact performance in simple associative learning and normal responses in consumption of reward. In an additional series of assessments, motivational functions also were impoverished in DN-DISC1 mice, including tests of the dynamic modulation of reward value by effortful action, progressive ratio performance, and social behavior. Augmentation of an oxidative stress-associated cascade (e.g., a nuclear GAPDH cascade) points to an underlying condition that may contribute to the profile of cognitive and motivational impairments in DN-DISC1 mice by affecting the functional integrity of the prefrontal cortex and dysfunction within its connected networks. As such, this model should be useful for further preclinical research and drug discovery efforts relevant to the burden of prefrontal dysfunction in neuropsychiatric illness.


Asunto(s)
Trastornos del Conocimiento/metabolismo , Trastornos Mentales/metabolismo , Motivación , Estrés Oxidativo , Corteza Prefrontal/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/patología , Conducta Social
11.
J Neurosci ; 34(9): 3419-28, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573298

RESUMEN

The neurotrophin receptor p75(NTR) has been implicated in mediating neuronal apoptosis after injury to the CNS. Despite its frequent induction in pathologic states, there is limited understanding of the mechanisms that regulate p75(NTR) expression after injury. Here, we show that after focal cerebral ischemia in vivo or oxygen-glucose deprivation in organotypic hippocampal slices or neurons, p75(NTR) is rapidly induced. A concomitant induction of proNGF, a ligand for p75(NTR), is also observed. Induction of this ligand/receptor system is pathologically relevant, as a decrease in apoptosis, after oxygen-glucose deprivation, is observed in hippocampal neurons or slices after delivery of function-blocking antibodies to p75(NTR) or proNGF and in p75(NTR) and ngf haploinsufficient slices. Furthermore, a significant decrease in infarct volume was noted in p75(NTR)-/- mice compared with the wild type. We also investigated the regulatory mechanisms that lead to post-ischemic induction of p75(NTR). We demonstrate that induction of p75(NTR) after ischemic injury is independent of transcription but requires active translation. Basal levels of p75(NTR) in neurons are maintained in part by the expression of microRNA miR-592, and an inverse correlation is seen between miR-592 and p75(NTR) levels in the adult brain. After cerebral ischemia, miR-592 levels fall, with a corresponding increase in p75(NTR) levels. Importantly, overexpression of miR-592 in neurons decreases the level of ischemic injury-induced p75(NTR) and attenuates activation of pro-apoptotic signaling and cell death. These results identify miR-592 as a key regulator of p75(NTR) expression and point to a potential therapeutic candidate to limit neuronal apoptosis after ischemic injury.


Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica/fisiología , Infarto de la Arteria Cerebral Media/patología , MicroARNs/metabolismo , Neuronas/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glucosa/deficiencia , Hipocampo/patología , Humanos , Hipoxia , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Factor de Crecimiento Nervioso/metabolismo , Precursores de Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética
12.
J Biol Chem ; 289(6): 3547-54, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24324270

RESUMEN

The protein mutated in Huntington disease (HD), mutant huntingtin (mHtt), is expressed throughout the brain and body. However, the pathology of HD is characterized by early and dramatic destruction selectively of the striatum. We previously reported that the striatal-specific protein Rhes binds mHtt and enhances its cytotoxicity. Moreover, Rhes-deleted mice are dramatically protected from neurodegeneration and motor dysfunction in mouse models of HD. We now report a function of Rhes in autophagy, a lysosomal degradation pathway implicated in aging and HD neurodegeneration. In PC12 cells, deletion of endogenous Rhes decreases autophagy, whereas Rhes overexpression activates autophagy. These effects are independent of mTOR and opposite in the direction predicted by the known activation of mTOR by Rhes. Rhes robustly binds the autophagy regulator Beclin-1, decreasing its inhibitory interaction with Bcl-2 independent of JNK-1 signaling. Finally, co-expression of mHtt blocks Rhes-induced autophagy activation. Thus, the isolated pathology and delayed onset of HD may reflect the striatal-selective expression and changes in autophagic activity of Rhes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Proteínas de Unión al GTP/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Proteínas de Unión al GTP/genética , Eliminación de Gen , Células HEK293 , Células HeLa , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Proteínas de la Membrana/genética , Ratones , Proteína Quinasa 8 Activada por Mitógenos , Células PC12 , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
J Biol Chem ; 289(9): 5799-808, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24368770

RESUMEN

The ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (ß-secretase, BACE1) initiates amyloidogenic processing of APP to generate amyloid ß (Aß), which is a hallmark of Alzheimer disease (AD) pathology. Cerebral levels of BACE1 are elevated in individuals with AD, but the molecular mechanisms are not completely understood. We demonstrate that Rheb GTPase (Ras homolog enriched in brain), which induces mammalian target of rapamycin (mTOR) activity, is a physiological regulator of BACE1 stability and activity. Rheb overexpression depletes BACE1 protein levels and reduces Aß generation, whereas the RNAi knockdown of endogenous Rheb promotes BACE1 accumulation, and this effect by Rheb is independent of its mTOR signaling. Moreover, GTP-bound Rheb interacts with BACE1 and degrades it through proteasomal and lysosomal pathways. Finally, we demonstrate that Rheb levels are down-regulated in the AD brain, which is consistent with an increased BACE1 expression. Altogether, our study defines Rheb as a novel physiological regulator of BACE1 levels and Aß generation, and the Rheb-BACE1 circuitry may have a role in brain biology and disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/biosíntesis , Encéfalo/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Encéfalo/patología , Regulación Enzimológica de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Neuropéptidos/genética , Unión Proteica , Proteolisis , Proteína Homóloga de Ras Enriquecida en el Cerebro
14.
Neurobiol Dis ; 82: 66-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26048156

RESUMEN

Huntington's disease (HD) is caused by an expansion of glutamine repeats in the huntingtin protein (mHtt) that invokes early and prominent damage of the striatum, a region that controls motor behaviors. Despite its ubiquitous expression, why certain brain regions, such as the cerebellum, are relatively spared from neuronal loss by mHtt remains unclear. Previously, we implicated the striatal-enriched GTPase, Rhes (Ras homolog enriched in the striatum), which binds and SUMOylates mHtt and increases its solubility and cellular cytotoxicity, as the cause for striatal toxicity in HD. Here, we report that Rhes deletion in HD mice (N171-82Q), which express the N-terminal fragment of human Htt with 82 glutamines (Rhes(-/-)/N171-82Q), display markedly reduced HD-related behavioral deficits, and absence of lateral ventricle dilatation (secondary to striatal atrophy), compared to control HD mice (N171-82Q). To further validate the role of GTPase Rhes in HD, we tested whether ectopic Rhes expression would elicit a pathology in a brain region normally less affected in HD. Remarkably, ectopic expression of Rhes in the cerebellum of N171-82Q mice, during the asymptomatic period led to an exacerbation of motor deficits, including loss of balance and motor incoordination with ataxia-like features, not apparent in control-injected N171-82Q mice or Rhes injected wild-type mice. Pathological and biochemical analysis of Rhes-injected N171-82Q mice revealed a cerebellar lesion with marked loss of Purkinje neuron layer parvalbumin-immunoreactivity, induction of caspase 3 activation, and enhanced soluble forms of mHtt. Similarly reintroducing Rhes into the striatum of Rhes deleted Rhes(-/-)Hdh(150Q/150Q) knock-in mice, elicited a progressive HD-associated rotarod deficit. Overall, these studies establish that Rhes plays a pivotal role in vivo for the selective toxicity of mHtt in HD.


Asunto(s)
Ataxia/genética , Cerebelo/metabolismo , Proteínas de Unión al GTP/genética , Enfermedad de Huntington/genética , Degeneraciones Espinocerebelosas/genética , Animales , Ataxia/metabolismo , Ataxia/patología , Cerebelo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/patología
15.
Biochim Biophys Acta ; 1820(6): 736-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21803124

RESUMEN

BACKGROUND: One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW: The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS: S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE: Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.


Asunto(s)
Muerte Celular , Sistema Nervioso Central/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/fisiología , Óxido Nítrico/metabolismo , Animales , Caspasas/metabolismo , Comunicación Celular , Sistema Nervioso Central/citología , Cisteína/química , Cisteína/metabolismo , Humanos , Óxido Nítrico/química , Nitrosación , Estrés Oxidativo , Transducción de Señal
16.
Sci Adv ; 8(12): eabm3877, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319973

RESUMEN

Rhes (RASD2) is a thyroid hormone-induced gene that regulates striatal motor activity and promotes neurodegeneration in Huntington disease (HD) and tauopathy. Rhes moves and transports the HD protein, polyglutamine-expanded huntingtin (mHTT), via tunneling nanotube (TNT)-like membranous protrusions between cultured neurons. However, similar intercellular Rhes transportation in the intact brain was unknown. Here, we report that Rhes induces TNT-like protrusions in the striatal medium spiny neurons (MSNs) and transported between dopamine-1 receptor (D1R)-MSNs and D2R-MSNs of intact striatum and organotypic brain slices. Notably, mHTT is robustly transported within the striatum and from the striatum to the cortical areas in the brain, and Rhes deletion diminishes such transport. Moreover, Rhes moves to the cortical regions following restricted expression in the MSNs of the striatum. Thus, Rhes is a first striatum-enriched protein demonstrated to move and transport mHTT between neurons and brain regions, providing new insights into interneuronal protein transport in the brain.


Asunto(s)
Proteínas de Unión al GTP , Enfermedad de Huntington , Animales , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo
17.
J Neural Transm (Vienna) ; 118(4): 531-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21069391

RESUMEN

Accumulating evidence supports neuroprotective role of trophic factors in amyotrophic lateral sclerosis (ALS). Previous studies from our laboratory report that the CSF of patients with sporadic ALS (ALS-CSF) induces degenerative changes in the rat spinal motor neurons and reactive astrogliosis in the surrounding gray matter. The present study was aimed to investigate if the ALS-CSF affected the expression of trophic factors namely, brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) in the newborn rat spinal cords. ALS-CSF was intrathecally injected into the neonatal rats and the mRNA levels of the trophic factors were determined by quantitative real-time polymerase chain reaction. Here, we report significant down regulation in the gene expression of trophic factors for BDNF, FGF2 and IGF1. BDNF mRNA levels were found to be reduced by 6.8-fold in the ALS-CSF injected group compared to control groups. The levels of IGF1 and FGF2 mRNA were also decreased by 3.91- and 2.13-fold, respectively, in the ALS group. We further found that exogenous supplementation of BDNF considerably reduced the aberrant phosphorylation of neurofilaments, complementing our earlier findings of restored expression of voltage gated sodium channel. Reduced expression of trophic factors indicates an altered microenvironment of the motor neurons and could possibly be one of the contributing factors in the degeneration process.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas del Líquido Cefalorraquídeo/toxicidad , Regulación hacia Abajo/fisiología , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Recién Nacidos , Células Cultivadas , Proteínas del Líquido Cefalorraquídeo/aislamiento & purificación , Humanos , Factores de Crecimiento Nervioso/biosíntesis , Ratas , Médula Espinal/patología
18.
Nat Commun ; 12(1): 1461, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674575

RESUMEN

The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Neuronas/metabolismo , Ribosomas/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación hacia Arriba
19.
PLoS One ; 16(10): e0258486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34648564

RESUMEN

Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.


Asunto(s)
Proteínas de Unión al GTP/genética , Enfermedad de Huntington/patología , Animales , Fenómenos Biomecánicos , Peso Corporal , Encéfalo/fisiología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
20.
Transl Psychiatry ; 10(1): 336, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009372

RESUMEN

The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.


Asunto(s)
Antipsicóticos , Haloperidol , Animales , Antipsicóticos/toxicidad , Catalepsia/inducido químicamente , Antagonistas de Dopamina , Haloperidol/toxicidad , Ratones , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA