Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 78(12): 4023-4036, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34633487

RESUMEN

Colistin-resistant multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria are highly lethal and many researchers have tried hard to combat these microorganisms around the world. Infections caused by these bacteria are resistant to the last resort of antibiotic therapy and have posed a major challenge in clinical and public health. Since the production of new antibiotics is very expensive and also very slow compared to the increasing rate of antibiotic resistance, researchers are suggesting the use of natural substances with high antibacterial potential. Bacteriophages are one of the most effective therapeutic measures that are known to exist for use for incurable and highly resistant infections. Phages are highly taken into consideration due to the lack of side effects, potential spread to various body organs, distinct modes of action from antibiotics, and proliferation at the site of infection. Although the effects of phages on MDR and XDR bacteria have been demonstrated in various studies, only a few have investigated the effect of phage therapy on colistin-resistant isolates. Therefore, in this review, we discuss the problems caused by colistin-resistant MDR and XDR bacteria in the clinics, explain the different mechanisms associated with colistin resistance, introduce bacteriophage therapy as a powerful remedy, and finally present new studies that have used bacteriophages against colistin-resistant isolates.


Asunto(s)
Bacteriófagos , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas
2.
Comp Immunol Microbiol Infect Dis ; 81: 101747, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35030534

RESUMEN

In the current study, we investigated the antibacterial activity of main quorum sensing autoinducers of Pseudomonas aeruginosa, C12-HSL and C4-HSL, against MDR Staphylococcus aureus isolates and their synergistic effects with some common antibiotics. Forty clinical isolates of S. aureus were collected and their antibiotic susceptibility pattern was evaluated. Then, 10 resistant isolates were selected for further studies. In the following, the antibacterial activity of quorum sensing C12-HSL and C4-HSL inducers of P. aeruginosa was evaluated against selected isolates based on the microdilution method and Time Killing assay as well as their synergistic activity with selected antibiotics. The ability of inductors to hemolysis and their cytotoxicity on CHO and HeLa cell lines was also assessed. For the assessment of antibacterial activity, Acinetobacter baumannii was used as negative control. The results demonstrated that C12 and C4 have antibacterial activity against MDR S. aureus isolates but had no effect on A. baumannii. Time Killing test showed that at 2X MIC concentration, the maximum inhibition (100%) is observed after 120 min for C12 and 240 min for C4. The IC50 of inducers was about 512 µg/ml. In addition, no synergistic effects were observed.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , 4-Butirolactona/análogos & derivados , Animales , Antibacterianos/farmacología , Células HeLa , Humanos , Staphylococcus aureus
3.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-33753577

RESUMEN

Due to the broad-spectrum of antibiotic resistance, herein we investigated the possibility of using imipenemconjugated silver nanoparticles (IMP-AgNPs) against multidrug-resistant isolates of Pseudomonas aeruginosa. For this purpose, 200 clinical isolates were tested against different antibiotics to determine the antimicrobial susceptibility. To identify blaVIM and blaIMP resistance genes, PCR was used. The synthesized AgNPs and conjugants were characterized using UV-vis spectroscopy, XRD, SEM, TEM, DLS, and FTIR. The stability, drug release kinetics, cytotoxicity, hemolytic and apoptotic effects of NPs were also investigated. MIC of the imipenem, AgNPs, and conjugants were evaluated versus P. aeruginosa isolates. Finally, the effects of the IMP-AgNPs to heal burn wounds in rats was evaluated. According to the results, about 68% of isolates showed resistance to imipenem (MIC ≥ 64 µg/ml to ≥ 512 µg/ml). Analytical results verified the synthesis of AgNPs and IMP-AgNPs. A Dose-dependent decrease happened in terms of the MIC values of IMP-AgNPs were also affected by the existence of resistant genes. Low cytotoxic was observed regarding AgNPs which lead to apoptosis. The histopathological results showed a considerable epithelization in treated groups with IMPAgNPs. Accordingly, IMP-AgNPs can be considered as a powerful antibacterial agent to treat the infections caused by multidrug-resistant P. aeruginosa.


Asunto(s)
Antibacterianos/administración & dosificación , Farmacorresistencia Bacteriana Múltiple , Imipenem/administración & dosificación , Pseudomonas aeruginosa , Plata/administración & dosificación , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana
4.
Int J Nanomedicine ; 15: 6905-6916, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061358

RESUMEN

INTRODUCTION: The extensive drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) causes a range of infections with high mortality rate, which inflicts additional costs on treatment. The use of nano-biotechnology-based methods in medicine has opened a new perspective against drug-resistant bacteria. The aim of this study was to evaluate the effectiveness of the AgNO3 nanoparticles alone and conjugated with imipenem (IMI) to combat extensively drug-resistant P. aeruginosa. METHODS: Antibiotic susceptibility was carried out using disc diffusion method. Detection of different resistant genes was performed using standard polymerase chain reaction (PCR). The chemically synthesized AgNO3 particles were characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) methods. Fourier transform infrared spectroscopy (FTIR) was accomplished to confirm the binding of AgNO3 with IMI. The microdilution broth method was used to obtain minimum inhibitory concentration (MIC) of AgNO3 and IMI-conjugated AgNO3. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was carried out on L929 cell line to study the cytotoxicity of nanoparticles. The data were analyzed by Eta correlation ratio and chi-square (X 2) test. RESULTS: Analysis of the antibiotic resistance pattern showed that 12 (24%) isolates were XDR, and MIC values of IMI were between 64 and 128 µg/mL. Frequency of SHV, TEM, CTX M, IMP, VIM, OPR, SIM, SPM, GIM, NDM, VEB, PER, KPC, OXA, intI, intII, and intIII genes were 29 (58%), 26 (52%), 26 (52%), 32 (64%), 23 (46%), 43 (86%), 3 (6%), 6 (12%), 3 (6%), 4 (8%), 7 (14%), 6 (12%), 18 (36%), 4 (8%), 19 (38%), 16 (32%), and 2 (4%), respectively. The XRD, SEM, DLS, and FTIR analysis confirmed the synthesis of AgNO3 nanoparticles and their conjugation with IMI. The AgNO3 nanoparticles had antimicrobial activity, and their conjugation with IMI showed enhanced effectiveness against XDR isolates. The synthesized AgNO3 showed no cytotoxic effects. CONCLUSION: The results suggest that IMI-conjugated AgNO3 has a strong potency as a powerful antibacterial agent against XDR P. aeruginosa.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Imipenem/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Nitrato de Plata/farmacología , Línea Celular , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Dispersión Dinámica de Luz , Humanos , Imipenem/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Nanoconjugados/química , Pseudomonas aeruginosa/genética , Nitrato de Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA