Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(4): 235-45, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21427765

RESUMEN

The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.


Asunto(s)
Codón Iniciador/genética , Biosíntesis de Proteínas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , Animales , Factor 4A Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Modelos Genéticos , ARN Mensajero/metabolismo
2.
Mol Cancer ; 13: 45, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24588908

RESUMEN

BACKGROUND: Gain of function mutations in B-RAF and N-RAS occur frequently in melanoma, leading to mitogen activating protein kinase (MAPK) pathway activation, and this pathway is the target of drugs in development. Our purpose was to study clinical characteristics of patients with mutations in this pathway and to determine activity of inhibitors of B-RAF and MEK in short term cultures grown from tumors of some of these patients. METHODS: Clinical and pathologic data were collected retrospectively on melanoma patients tested for B-RAF and N-RAS mutations at the Yale Cancer Center and associations with survival were determined. We studied in vitro activity of the pan-RAF inhibitor, RAF265, and the MEK inhibitor, MEK162, in 22 melanoma short term cultures. We further characterized the effect of MEK inhibition on apoptosis and growth of melanoma cultures. RESULTS: In a cohort of 144 metastatic melanoma patients we found that patients with N-RAS mutant melanoma had a worse prognosis. These patients were more likely to have brain metastases at the time of presentation with metastatic disease than their N-RAS-wild-type counterparts. All N-RAS mutant melanoma cultures tested in our study (n = 7) were sensitive to MEK inhibition 162. Exposure to MEK162 reduced ERK1/2 phosphorylation, and induced apoptosis. Clonogenic survival was significantly reduced in sensitive melanoma cell cultures. CONCLUSIONS: The prognosis of patients with melanoma expressing constitutively active N-RAS is poor, consistent with studies performed at other institutions. N-RAS mutant melanoma cultures appear to be particularly sensitive to MEK162, supporting ongoing clinical trials with MEK162 in N-RAS mutated melanoma.


Asunto(s)
Genes ras/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Melanoma/metabolismo , Anciano , Bencimidazoles/farmacología , Western Blotting , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Melanoma/mortalidad , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , Modelos de Riesgos Proporcionales , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
3.
Proc Natl Acad Sci U S A ; 106(52): 22217-22, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018725

RESUMEN

Translational control plays an important role in cell growth and tumorigenesis. Cap-dependent translation initiation of mammalian mRNAs with structured 5'UTRs requires the DExH-box protein, DHX29, in vitro. Here we show that DHX29 is important for translation in vivo. Down-regulation of DHX29 leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. DHX29 depletion also impedes cancer cell growth in culture and in xenografts. Thus, DHX29 is a bona fide translation initiation factor that potentially can be exploited as a target to inhibit cancer cell growth.


Asunto(s)
Proliferación Celular , Neoplasias/etiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Helicasas/metabolismo , Regiones no Traducidas 5' , Animales , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Trasplante Heterólogo
4.
Cancer Res ; 62(4): 1093-102, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11861388

RESUMEN

Breast cancer progression may be affected by various cellular components expressed by the tumor cells and/or by microenvironmental factors. Many studies report the correlation between breast cancer progression and monocyte infiltration into the tumor site. We have identified recently the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES), a major monocyte chemoattractant expressed by breast tumor cells, as a potential contributor to breast cancer progression. In the present study, analysis of the regulation of RANTES expression demonstrates that the expression of RANTES in breast tumor cells is elevated significantly and in a synergistic manner by IFN-gamma and tumor necrosis factor-alpha. Identification of the mechanisms by which RANTES may contribute to breast cancer progression included the analysis of the potential ability of RANTES to act in paracrine and indirect mechanisms, as well as directly on the tumor cells, to promote disease progression. Our results suggest that breast tumor cell-derived RANTES may promote breast cancer progression by its partial contribution to monocyte migration into breast tumor sites. Moreover, RANTES promotes the expression of matrix metalloproteinase (MMP) 9 by THP-1 monocytic cells and elevates vascularity in chick chorioallantoic membrane assays. Tumor necrosis factor-alpha, a major monocyte-derived cytokine, was found to promote the expression of MMP9 and MMP2 by MCF-7 and T47D breast adenocarcinoma cells, respectively, and to induce the de novo expression of an additional proteolytic enzyme by T47D cells, presumably MMP9. The possibility that RANTES may act directly on breast tumor cells was supported by detection of the expression of the CCR5 RANTES receptor in biopsy sections of breast cancer patients and by the ability of RANTES to promote the expression of MMP9 by MCF-7 cells. In all, our study suggests that the expression of RANTES by breast tumor cells results not only in monocyte migration to the tumor site but also in protumorigenic activities of RANTES and of proinflammatory cytokines that may facilitate metastasis formation and contribute to disease progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Quimiocina CCL5/fisiología , Animales , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , Quimiocina CCL5/biosíntesis , Embrión de Pollo , Citocinas/fisiología , Progresión de la Enfermedad , Humanos , Metaloproteinasa 9 de la Matriz/biosíntesis
6.
Mol Cancer Ther ; 14(2): 326-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25512618

RESUMEN

Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento/métodos , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/metabolismo , Recombinación Homóloga/efectos de los fármacos , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Endocrinology ; 145(5): 2228-44, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14736735

RESUMEN

The role of ERK, Jun N-terminal kinase (JNK), p38, and c-Src in GnRH-stimulated FSHbeta-subunit promoter activity was examined in the LbetaT-2 gonadotroph cell line. Incubation of the cells with a GnRH agonist resulted in activation of ERK, JNK, p38, and c-Src. The peak of ERK activation was observed at 5 min, whereas that of JNK, p38, and c-Src at 30 min, declining thereafter. ERK activation by GnRH is dependent on protein kinase C (PKC), as evident by activation, inhibition, and depletion of 12-O-tetradecanoylphorbol-13-acetate-sensitive PKC subspecies. Ca(2+) influx, but not Ca(2+) mobilization, is required for ERK activation. GnRH signaling to ERK is partially mediated by dynamin and a protein tyrosine kinase, apparently c-Src. ERK activation by GnRH in LbetaT-2 cells does not involve transactivation of epidermal growth factor receptor or mediation via Gbetagamma or beta-arrestin. Once activated by GnRH, ERK translocates to the nucleus. We examined the role of ERK, JNK, p38, and c-Src in GnRH-stimulated ovine FSHbeta promoter, linked to a luciferase reporter gene (-4741oFSHbeta-LUC). The PKC activator 12-O-tetradecanoylphorbol-13-acetate, but not the Ca(2+) ionophore ionomycin, stimulated FSHbeta-luciferase (LUC) activity. Furthermore, down-regulation of PKC, but not removal of Ca(2+), inhibited the GnRH response. Cotransfection of FSHbeta-LUC and the constitutively active forms of Raf-1 and MEK stimulated FSHbeta-LUC activity, whereas the dominant negatives of Ras, Raf-1, and MEK and the selective MEK inhibitor PD98059, abolished GnRH-induced FSHbeta-LUC activity. The dominant negatives of CDC42 and JNK reduced the GnRH response by 36 and 49%, respectively. Incubation of the cells with the p38 or the c-Src inhibitors SB203580 and PP1 also reduced the GnRH response. Surprisingly, two proximal activator protein-1 sites contribute very little to the GnRH response. Thus, PKC, ERK, JNK, p38, and c-Src, but not Ca(2+), are involved in GnRH induction of the ovine FSHbeta gene.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Liberadora de Gonadotropina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Buserelina/farmacología , Proteína Tirosina Quinasa CSK , Calcio/fisiología , Línea Celular , Núcleo Celular/enzimología , Dinaminas/metabolismo , Activación Enzimática/efectos de los fármacos , Ionomicina/farmacología , Ionóforos/farmacología , MAP Quinasa Quinasa 4 , Regiones Promotoras Genéticas/genética , Proteína Quinasa C/metabolismo , Ovinos , Acetato de Tetradecanoilforbol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos , Familia-src Quinasas
8.
Mol Cell Biol ; 34(6): 1046-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24396066

RESUMEN

The simultaneous interaction of poly(A)-binding protein (PABP) with eukaryotic translation initiation factor 4G (eIF4G) and the mRNA 3' poly(A) tail promotes translation initiation. We previously showed that the interaction of PABP-interacting protein 1 (Paip1) with PABP and eukaryotic translation initiation factor 3 (eIF3; via the eIF3g subunit) further stimulates translation. Here, we demonstrate that the interaction of eIF3 with Paip1 is regulated by amino acids through the mTORC1 signaling pathway. The Paip1-eIF3 interaction is impaired by the mTORC1 inhibitors, rapamycin and PP242. We show that ribosomal protein S6 kinases 1 and 2 (S6K1/2) promote the interaction of eIF3 with Paip1. The enhancement of Paip1-eIF3 interaction by amino acids is abrogated by an S6K inhibitor or shRNA against S6K1/2. S6K1 interacts with eIF3f and, in vitro, phosphorylates eIF3. Finally, we show that S6K inhibition leads to a reduction in translation by Paip1. We propose that S6K1/2 phosphorylate eIF3 to stimulate Paip1-eIF3 interaction and consequent translation initiation. Taken together, these data demonstrate that eIF3 is a new translation target of the mTOR/S6K pathway.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Fosforilación/genética , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
9.
Adv Pharmacol ; 65: 1-26, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22959021

RESUMEN

Malignant cells arise from particular mutations in genes controlling cell proliferation, invasion, and survival. Older antineoplastic drugs were designed to target vital cellular processes, such as DNA maintenance and repair and cell division. As a result, these drugs can affect all proliferating cells and are associated with unavoidable toxicities. Recent discoveries in cancer research have identified "driver" mutations in some types of cancer, and efforts have been undertaken to develop drugs targeting these oncogenes. In most cases, due to escape mechanisms and adaptive responses, single oncogene targeting is insufficient to induce prolonged responses in solid tumors. Drug combinations are therefore used to enhance the growth inhibitory and cytotoxic effects of the targeted therapies. Depending on the position of additional targets within the signaling network, drug combinations may target either different signaling pathways (parallel targeting) or the same pathway at several fragile nodes (vertical targeting). In this review, we discuss strategies of multitarget inhibition with a focus on vertical signaling pathway targeting.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Humanos , Mitógenos/farmacología , Mitógenos/uso terapéutico , Neoplasias/genética , Oncogenes/genética
10.
Cell Cycle ; 9(20): 4106-9, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20948310

RESUMEN

Messenger RNA translation or protein synthesis, is a fundamental biological process affecting cell growth, survival and proliferation. Initiation is the rate limiting and hence the most regulated step of translation. In eukaryotes, translation initiation is facilitated by multiple protein factors collectively called eIFs (for eukaryotic translation initiation factors). The complex consisting of the eIF4 group factors including the mRNA cap-binding eIF4E protein, large scaffolding protein eIF4G and RNA helicase eIF4A is assisted by the eIF4B co-factor to unwind local secondary structures and create a ribosome landing pad on mRNA. Recruitment of the ribosome and augmentation in the mRNA scanning process culminates in the positioning of the ribosome over the start codon. Deregulated translational control is believed to play an important role in oncogenic transformation. Indeed, many eIFs are bona fide proto-oncogenes. In many types of human cancers, eIFs are either overexpressed or ectopically activated by Ras-MAPK and PI3K-mTOR signaling cascades, resulting in increased survival and accelerated proliferation. In this review we will analyze the bulk of data describing eIF4B and its role in cell survival and proliferation. Recent studies have shown that eIF4B is phosphorylated and activated by Ras-MAPK and PI3K-mTOR signaling cascades. In addition, eIF4B regulates translation of proliferative and pro-survival mRNAs. Moreover, eIF4B depletion in cancer cells attenuates proliferation, sensitizes them to genotoxic stress-driven apoptosis. Taken together, these findings identify eIF4B as a potential target for development of anti-cancer therapies.


Asunto(s)
Proliferación Celular , Supervivencia Celular/fisiología , Factores Eucarióticos de Iniciación/metabolismo , Transducción de Señal/fisiología , Animales , Factores Eucarióticos de Iniciación/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas ras/metabolismo
11.
Mol Cell Biol ; 30(6): 1478-85, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086100

RESUMEN

Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5' untranslated region (5'UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5'UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Regiones no Traducidas 5' , Apoptosis/efectos de los fármacos , Camptotecina/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HeLa , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Cancer Cell ; 16(5): 439-46, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19878875

RESUMEN

eIF4E, the mRNA 5' cap-binding translation initiation factor, is overexpressed in numerous cancers and is implicated in mechanisms underlying oncogenesis and senescence. 4E-BPs (eIF4E-binding proteins) inhibit eIF4E activity, and thereby act as suppressors of eIF4E-dependent pathways. Here, we show that tumorigenesis is increased in p53 knockout mice that lack 4E-BP1 and 4E-BP2. However, primary fibroblasts lacking 4E-BPs, but expressing p53, undergo premature senescence and resist oncogene-driven transformation. Thus, the p53 status governs 4E-BP-dependent senescence and transformation. Intriguingly, the 4E-BPs engage in senescence via translational control of the p53-stabilizing protein, Gas2. Our data demonstrate a role for 4E-BPs in senescence and tumorigenesis and highlight a p53-mediated mechanism of senescence through a 4E-BP-dependent pathway.


Asunto(s)
Transformación Celular Neoplásica/genética , Factor 4E Eucariótico de Iniciación/genética , Proteína p53 Supresora de Tumor/genética , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Senescencia Celular/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Ratones , Ratones Noqueados , Proteína p53 Supresora de Tumor/metabolismo
14.
J Biol Chem ; 282(19): 14056-64, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17360704

RESUMEN

Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser(235/236) in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser(235/236) reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína S6 Ribosómica/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Proteínas ras/metabolismo , Células Cultivadas , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Riñón/metabolismo , Luciferasas/metabolismo , Quinasas Quinasa Quinasa PAM , Mutación , Fosforilación , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Interferente Pequeño/farmacología , Proteína S6 Ribosómica/antagonistas & inhibidores , Proteína S6 Ribosómica/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ribosomas/metabolismo , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
15.
EMBO J ; 25(12): 2781-91, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16763566

RESUMEN

The eukaryotic translation initiation factor 4B (eIF4B) plays a critical role in recruiting the 40S ribosomal subunit to the mRNA. In response to insulin, eIF4B is phosphorylated on Ser422 by S6K in a rapamycin-sensitive manner. Here we demonstrate that the p90 ribosomal protein S6 kinase (RSK) phosphorylates eIF4B on the same residue. The relative contribution of the RSK and S6K modules to the phosphorylation of eIF4B is growth factor-dependent, and the two phosphorylation events exhibit very different kinetics. The S6K and RSK proteins are members of the AGC protein kinase family, and require PDK1 phosphorylation for activation. Consistent with this requirement, phosphorylation of eIF4B Ser422 is abrogated in PDK1 null embryonic stem cells. Phosphorylation of eIF4B on Ser422 by RSK and S6K is physiologically significant, as it increases the interaction of eIF4B with the eukaryotic translation initiation factor 3.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Secuencia de Aminoácidos , Animales , Catálisis , Factor 3 de Iniciación Eucariótica/metabolismo , Factores Eucarióticos de Iniciación/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
16.
EMBO J ; 23(8): 1761-9, 2004 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15071500

RESUMEN

The eucaryotic translation initiation factor 4B (eIF4B) stimulates the helicase activity of the DEAD box protein eIF4A to unwind inhibitory secondary structure in the 5' untranslated region of eucaryotic mRNAs. Here, using phosphopeptide mapping and a phosphospecific antiserum, we identify a serum-responsive eIF4B phosphorylation site, Ser422, located in an RNA-binding region required for eIF4A helicase-promoting activity. Ser422 phosphorylation appears to be regulated by the S6Ks: (a) Ser422 phosphorylation is sensitive to pharmacological inhibitors of phosphoinositide-3 kinase and the mammalian target of rapamycin; (b) S6K1/S6K2 specifically phosphorylate Ser422 in vitro; and (c) rapamycin-resistant S6Ks confer rapamycin resistance upon Ser422 phosphorylation in vivo. Substitution of Ser422 with Ala results in a loss of activity in an in vivo translation assay, indicating that phosphorylation of this site plays an important role in eIF4B function. We therefore propose that eIF4B may mediate some of the effects of the S6Ks on translation.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Fosfoserina/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Línea Celular , Resistencia a Medicamentos , Factores Eucarióticos de Iniciación/genética , Humanos , Mutación/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA