Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35196516

RESUMEN

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN , Acetilación , Alelos , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Hum Genet ; 143(1): 59-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180561

RESUMEN

Perinatal stroke is associated with significant short- and long-term morbidity and has been recognized as the most common cause of cerebral palsy in term infants. The diagnosis of presumed perinatal stroke (PPS) is made in children who present with neurological deficit and/or seizures attributable to focal chronic infarction on neuroimaging and have uneventful neonatal history. The underlying mechanism of presumed perinatal stroke remains unknown and thorough investigation of potential monogenic causes has not been conducted to date. Here, we describe the use of untargeted exome sequencing to investigate a cohort of eight patients from six families with PPS. A likely deleterious variant was identified in four families. These include the well-established risk genes COL4A2 and JAM3. In addition, we report the first independent confirmation of the recently described link between ESAM and perinatal stroke. Our data also highlight NID1 as a candidate gene for the condition. This study suggests that monogenic disorders are important contributors to the pathogenesis of PPS and should be investigated by untargeted sequencing especially when traditional risk factors are excluded.


Asunto(s)
Accidente Cerebrovascular , Lactante , Recién Nacido , Niño , Embarazo , Femenino , Humanos , Arabia Saudita , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/diagnóstico , Neuroimagen/efectos adversos , Genómica , Factores de Riesgo
3.
Clin Genet ; 105(5): 488-498, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38193334

RESUMEN

ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Humanos , Adenosina Trifosfato , NADP/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Fenotipo
4.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37459438

RESUMEN

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Asunto(s)
Convulsiones , Simportadores de Sodio-Bicarbonato , Niño , Ratones , Humanos , Animales , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Convulsiones/genética , Mutación/genética , Neurotransmisores , Ácido gamma-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo
5.
Prenat Diagn ; 44(2): 196-204, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37594370

RESUMEN

OBJECTIVE: Fetal megacystis generally presents as suspected lower urinary tract obstruction (LUTO), which is associated with severe perinatal morbidity. Genetic etiologies underlying LUTO or a LUTO-like initial presentation are poorly understood. Our objectives are to describe single gene etiologies in fetuses initially ascertained to have suspected LUTO and to elucidate genotype-phenotype correlations. METHODS: A retrospective case series of suspected fetal LUTO positive for a molecular diagnosis was collected from five centers in the Fetal Sequencing Consortium. Demographics, sonograms, genetic testing including variant classification, and delivery outcomes were abstracted. RESULTS: Seven cases of initially prenatally suspected LUTO-positive for a molecular diagnosis were identified. In no case was the final diagnosis established as urethral obstruction that is, LUTO. All variants were classified as likely pathogenic or pathogenic. Smooth muscle deficiencies involving the bladder wall and interfering with bladder emptying were identified in five cases: MYOCD (2), ACTG2 (2), and MYH11 (1). Other genitourinary and/or non-genitourinary malformations were seen in two cases involving KMT2D (1) and BBS10 (1). CONCLUSION: Our series illustrates the value of molecular diagnostics in the workup of fetuses who present with prenatally suspected LUTO but who may have a non-LUTO explanation for their prenatal ultrasound findings.


Asunto(s)
Enfermedades Fetales , Obstrucción Uretral , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Enfermedades Fetales/diagnóstico , Obstrucción Uretral/diagnóstico por imagen , Obstrucción Uretral/genética , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/anomalías , Ultrasonografía , Ultrasonografía Prenatal
6.
Hum Genet ; 142(4): 477-482, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36715754

RESUMEN

Ichthyosis is a genetically heterogeneous genodermatosis characterized by severely rough, dry and scaly skin. We report two consanguineous families with congenital ichthyosis. Combined positional mapping and exome sequencing of the two families revealed novel homozygous likely deleterious variants in PRSS8 (encoding prostasin) within a linkage locus on chromosome 16. One variant involved a canonical splice site and was associated with reduced abundance of the normal transcript, while the other was a missense variant that altered a highly conserved residue. The phenotype of Prss8 knockout mouse bears a striking resemblance to the one we describe in human patients, including the skin histopathology. Our data suggest a novel PRSS8-related ichthyosis disorder.


Asunto(s)
Ictiosis , Serina Endopeptidasas , Animales , Humanos , Ratones , Ictiosis/genética , Ratones Noqueados , Mutación , Mutación Missense , Linaje , Fenotipo , Serina Endopeptidasas/genética
7.
Hum Genet ; 142(10): 1491-1498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37656279

RESUMEN

DBR1 encodes the only known human lariat debranching enzyme and its deficiency has been found to cause an autosomal recessive inborn error of immunity characterized by pediatric brainstem viral-induced encephalitis (MIM 619441). We describe a distinct allelic disorder caused by a founder recessive DBR1 variant in four families (DBR1(NM_016216.4):c.200A > G (p.Tyr67Cys)). Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life. Patient-derived fibroblasts displayed the characteristic accumulation of intron lariats in their RNA as revealed by targeted and untargeted analysis, in addition to a marked reduction of DBR1 on immunoblot analysis. We propose a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility and highlight the apparent lack of correlation with the degree of DBR1 deficiency.


Asunto(s)
Encefalitis , Ictiosis , Niño , Humanos , Alelos , Causalidad , Fibroblastos , Ictiosis/genética
8.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004447

RESUMEN

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos/etiología , Proteínas Activadoras de GTPasa/genética , Hipotonía Muscular/etiología , Mutación , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/etiología , Espasmos Infantiles/etiología , Alelos , Movimiento Celular , Proliferación Celular , Preescolar , Familia , Trastornos de Alimentación y de la Ingestión de Alimentos/patología , Femenino , Humanos , Lactante , Masculino , Hipotonía Muscular/patología , Trastornos del Neurodesarrollo/patología , Fenotipo , Espasmos Infantiles/patología
9.
Genet Med ; 25(1): 90-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36318270

RESUMEN

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Asunto(s)
Encefalopatías , Distonía , Trastornos del Movimiento , Humanos , Animales , Ratas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Trastornos del Movimiento/genética , Aminas , Encéfalo/metabolismo
10.
Hum Genet ; 141(1): 55-64, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750646

RESUMEN

Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission-fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial "dysmorphology" can be helpful in interpreting variants to reach a molecular diagnosis.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Proteínas de la Membrana/genética , Mitocondrias/fisiología , Enfermedades Mitocondriales/genética , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Línea Celular , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mutación Missense , Secuenciación del Exoma
11.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290337

RESUMEN

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genética
12.
Hepatology ; 71(6): 2067-2079, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31595528

RESUMEN

BACKGROUND AND AIMS: The clinical consequences of defective primary cilium (ciliopathies) are characterized by marked phenotypic and genetic heterogeneity. Although fibrocystic liver disease is an established ciliopathy phenotype, severe neonatal cholestasis is rarely recognized as such. APPROACH AND RESULTS: We describe seven individuals from seven families with syndromic ciliopathy clinical features, including severe neonatal cholestasis (lethal in one and necessitating liver transplant in two). Positional mapping revealed a single critical locus on chromosome 7. Whole-exome sequencing revealed three different homozygous variants in Tetratricopeptide Repeat Domain 26 (TTC26) that fully segregated with the phenotype. TTC26 (intraflagellar transport [IFT] 56/DYF13) is an atypical component of IFT-B complex, and deficiency of its highly conserved orthologs has been consistently shown to cause defective ciliary function in several model organisms. We show that cilia in TTC26-mutated patient cells display variable length and impaired function, as indicated by dysregulated sonic hedgehog signaling, abnormal staining for IFT-B components, and transcriptomic clustering with cells derived from individuals with closely related ciliopathies. We also demonstrate a strong expression of Ttc26 in the embryonic mouse liver in a pattern consistent with its proposed role in the normal development of the intrahepatic biliary system. CONCLUSIONS: In addition to establishing a TTC26-related ciliopathy phenotype in humans, our results highlight the importance of considering ciliopathies in the differential diagnosis of severe neonatal cholestasis even in the absence of more typical features.


Asunto(s)
Colestasis Intrahepática/genética , Enfermedades del Recién Nacido/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Repeticiones de Tetratricopéptidos/genética , Animales , Ciliopatías , Diagnóstico Diferencial , Proteínas Hedgehog , Humanos , Recién Nacido , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación , Transporte de Proteínas/genética , Índice de Severidad de la Enfermedad , Secuenciación del Exoma/métodos
13.
Clin Genet ; 100(6): 678-691, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34406647

RESUMEN

Monogenic diseases that result in early pregnancy loss or neonatal death are genetically and phenotypically highly variable. This often poses significant challenges in arriving at a molecular diagnosis for reproductive planning. Molecular autopsy by proxy (MABP) refers to the genetic testing of relatives of deceased individuals to deduce the cause of death. Here, we specifically tested couples who lost one or more children/pregnancies with no available DNA. We developed our testing strategy using whole exome sequencing data from 83 consanguineous Saudi couples. We detected the shared carrier state of 50 pathogenic variants/likely pathogenic variants in 43 families and of 28 variants of uncertain significance in 24 families. Negative results were seen in 16 couples after variant reclassification. In 10 families, the risk of more than one genetic disease was documented. Secondary findings were seen in 10 families: either genetic variants with potential clinical consequences for the tested individual or a female carrier for X-linked conditions. This couple-based approach has enabled molecularly informed genetic counseling for 52% (43/83 families). Given the predominance of autosomal recessive causes of pregnancy and child death in consanguineous populations, MABP can be a helpful approach to consanguineous couples who seek counseling but lack molecular data on their deceased offspring.


Asunto(s)
Autopsia , Asesoramiento Genético , Pruebas Genéticas/métodos , Técnicas de Diagnóstico Molecular , Atención Preconceptiva , Autopsia/métodos , Consanguinidad , Femenino , Estudios de Asociación Genética/métodos , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico , Fenotipo , Reacción en Cadena de la Polimerasa , Embarazo , Arabia Saudita , Secuenciación del Exoma
14.
Am J Med Genet A ; 185(12): 3859-3865, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34327814

RESUMEN

Intellectual disability (ID) is one of the most common disabilities in humans. In an effort to contribute to the expanding genetic landscape of ID, we describe a novel autosomal recessive ID candidate gene. Combined autozygome/exome analysis was performed in two unrelated consanguineous families with ID. Each of the two families had a novel homozygous likely deleterious variant in PLXNA2 and displayed the core phenotype of ID. PLXNA2 belongs to a family of transmembrane proteins that function as semaphorin receptors. Sema5A-PlexinA2 is known to regulate brain development in mouse, and Plxna2-/- mice display defective associative learning, sociability, and sensorimotor gating. We note the existence of variability in the phenotype among the three patients, including the existence of variable degree of ID, ranging from borderline intellectual functioning to moderate-severe ID, and the presence of cardiac anomalies in only one of the patients. We propose incomplete penetrance as a possible explanation of the observed difference in phenotypes. Future cases will be needed to support the proposed link between PLXNA2 and ID in humans.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Animales , Niño , Preescolar , Consanguinidad , Exoma/genética , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Linaje
15.
Hum Genet ; 139(10): 1273-1283, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367404

RESUMEN

Unlike disorders of primary cilium, primary ciliary dyskinesia (PCD) has a much narrower clinical spectrum consistent with the limited tissue distribution of motile cilia. Nonetheless, PCD diagnosis can be challenging due to the overlapping features with other disorders and the requirement for sophisticated tests that are only available in specialized centers. We performed exome sequencing on all patients with a clinical suspicion of PCD but for whom no nasal nitric oxide test or ciliary functional assessment could be ordered. Among 81 patients (56 families), in whom PCD was suspected, 68% had pathogenic or likely pathogenic variants in established PCD-related genes that fully explain the phenotype (20 variants in 11 genes). The major clinical presentations were sinopulmonary infections (SPI) (n = 58), neonatal respiratory distress (NRD) (n = 2), laterality defect (LD) (n = 6), and combined LD/SPI (n = 15). Biallelic likely deleterious variants were also encountered in AKNA and GOLGA3, which we propose as novel candidates in a lung phenotype that overlaps clinically with PCD. We also encountered a PCD phenocopy caused by a pathogenic variant in ITCH, and a pathogenic variant in CEP164 causing Bardet-Biedl syndrome and PCD presentation as a very rare example of the dual presentation of these two disorders of the primary and motile cilia. Exome sequencing is a powerful tool that can help "democratize" the diagnosis of PCD, which is currently limited to highly specialized centers.


Asunto(s)
Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Predisposición Genética a la Enfermedad , Neumonía/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Sinusitis/genética , Autoantígenos/genética , Cilios/patología , Trastornos de la Motilidad Ciliar/complicaciones , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/patología , Consanguinidad , Proteínas de Unión al ADN/genética , Femenino , Expresión Génica , Proteínas de la Matriz de Golgi/genética , Humanos , Masculino , Proteínas de Microtúbulos/genética , Mutación , Proteínas Nucleares/genética , Linaje , Fenotipo , Neumonía/complicaciones , Neumonía/diagnóstico , Neumonía/patología , Proteínas Represoras/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/complicaciones , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Síndrome de Dificultad Respiratoria del Recién Nacido/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Arabia Saudita , Sinusitis/complicaciones , Sinusitis/diagnóstico , Sinusitis/patología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
16.
Am J Hum Genet ; 100(5): 831-836, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475863

RESUMEN

Larsen syndrome is characterized by the dislocation of large joints and other less consistent clinical findings. Heterozygous FLNB mutations account for the majority of Larsen syndrome cases, but biallelic mutations in CHST3 and B4GALT7 have been more recently described, thus confirming the existence of recessive forms of the disease. In a multiplex consanguineous Saudi family affected by severe and recurrent large joint dislocation and severe myopia, we identified a homozygous truncating variant in GZF1 through a combined autozygome and exome approach. Independently, the same approach identified a second homozygous truncating GZF1 variant in another multiplex consanguineous family affected by severe myopia, retinal detachment, and milder skeletal involvement. GZF1 encodes GDNF-inducible zinc finger protein 1, a transcription factor of unknown developmental function, which we found to be expressed in the eyes and limbs of developing mice. Global transcriptional profiling of cells from affected individuals revealed a shared pattern of gene dysregulation and significant enrichment of genes encoding matrix proteins, including P3H2, which hints at a potential disease mechanism. Our results suggest that GZF1 mutations cause a phenotype of severe myopia and significant articular involvement not previously described in Larsen syndrome.


Asunto(s)
Heterogeneidad Genética , Factores de Transcripción de Tipo Kruppel/genética , Osteocondrodisplasias/genética , Adolescente , Alelos , Niño , Preescolar , Exoma , Femenino , Regulación de la Expresión Génica , Genes Recesivos , Homocigoto , Humanos , Masculino , Mutación , Linaje , Fenotipo , Análisis de Secuencia de ADN , Adulto Joven
17.
Genet Med ; 22(6): 1051-1060, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32055034

RESUMEN

PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.


Asunto(s)
Síndrome de Bardet-Biedl , Ciliopatías , Alelos , Síndrome de Bardet-Biedl/genética , Cilios/genética , Ciliopatías/genética , Humanos , Canales de Sodio
18.
Clin Genet ; 97(4): 661-665, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898316

RESUMEN

Erythrokeratoderma (EK) is heterogeneous clinical entity characterized by excessive scaling with resulting erythrokeratotic plaques. Several genes have been linked to EK and they encode a number of proteins that are important for the integrity of the keratinocyte layer of the epidermis. PERP is a transcription factor that is activated by both p53 and p63. However, its deficiency in a mouse model appears to only recapitulate p63-mediated role in skin development and organization. We report an extended multiplex consanguineous family in which an EK phenotype with a striking similarity to that observed in Perp-/- mice, is mapped to an autozygous region on chromosome 6 that spans PERP. Whole-exome sequencing revealed a novel variant in PERP that fully segregated with the phenotype. Functional analysis of patient- and control-derived keratinocytes revealed a deleterious effect of the identified variant on the intracellular localization of PERP. A previous report showed that PERP mutation causes a dominant form of keratoderma but a single patient in that report with a homozygous variant in PERP suggests that recessive inheritance is also possible. Our results, therefore, support the establishment of an autosomal recessive PERP-related EK phenotype in humans.


Asunto(s)
Leucemia Mieloide Aguda/genética , Proteínas de la Membrana/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Epidermis/metabolismo , Epidermis/patología , Regulación de la Expresión Génica/genética , Genes Recesivos/genética , Genes Supresores de Tumor , Homocigoto , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Leucemia Mieloide Aguda/patología , Ratones , Secuenciación del Exoma , Adulto Joven
19.
J Allergy Clin Immunol ; 144(2): 574-583.e5, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30872117

RESUMEN

BACKGROUND: The tumor TNF receptor family member 4-1BB (CD137) is encoded by TNFRSF9 and expressed on activated T cells. 4-1BB provides a costimulatory signal that enhances CD8+ T-cell survival, cytotoxicity, and mitochondrial activity, thereby promoting immunity against viruses and tumors. The ligand for 4-1BB is expressed on antigen-presenting cells and EBV-transformed B cells. OBJECTIVE: We investigated the genetic basis of recurrent sinopulmonary infections, persistent EBV viremia, and EBV-induced lymphoproliferation in 2 unrelated patients. METHODS: Whole-exome sequencing, immunoblotting, immunophenotyping, and in vitro assays of lymphocyte and mitochondrial function were performed. RESULTS: The 2 patients shared a homozygous G109S missense mutation in 4-1BB that abolished protein expression and ligand binding. The patients' CD8+ T cells had reduced proliferation, impaired expression of IFN-γ and perforin, and diminished cytotoxicity against allogeneic and HLA-matched EBV-B cells. Mitochondrial biogenesis, membrane potential, and function were significantly reduced in the patients' activated T cells. An inhibitory antibody against 4-1BB recapitulated the patients' defective CD8+ T-cell activation and cytotoxicity against EBV-infected B cells in vitro. CONCLUSION: This novel immunodeficiency demonstrates the critical role of 4-1BB costimulation in host immunity against EBV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Trastornos Linfoproliferativos/inmunología , Mutación Missense , Enfermedades de Inmunodeficiencia Primaria/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Preescolar , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Femenino , Herpesvirus Humano 4/genética , Humanos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Trastornos Linfoproliferativos/virología , Masculino , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/patología , Enfermedades de Inmunodeficiencia Primaria/virología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Secuenciación del Exoma
20.
Hum Genet ; 138(3): 221-229, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30758658

RESUMEN

Nuclear pore complex (NPC) is a fundamental component of the nuclear envelope and is key to the nucleocytoplasmic transport. Mutations in several NUP genes that encode individual components of NPC known as nucleoporins have been identified in recent years among patients with static encephalopathies characterized by developmental delay and microcephaly. We describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death. Autozygome and linkage analysis revealed that this phenotype is linked to a founder disease haplotype (chr9:127,113,732-135,288,807) in which whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214. Functional analysis of patient-derived fibroblasts recapitulated the dysmorphic phenotype of nuclei that was previously described in NUP214 knockdown cells. In addition, the typical rim staining of NUP214 is largely displaced, further supporting the deleterious effect of the variant. Our data expand the list of NUP genes that are mutated in encephalopathy disorders in humans.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas de Complejo Poro Nuclear/deficiencia , Secuencia de Aminoácidos , Consanguinidad , Femenino , Genes Recesivos , Ligamiento Genético , Homocigoto , Humanos , Lactante , Mutación , Linaje , Fenotipo , Índice de Severidad de la Enfermedad , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA