Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 250: 126006, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517754

RESUMEN

Tea polyphenols (TP) and plant proteins are significant materials in the food industry, the interactions between them are beneficial for their stability, functional properties, and biological activity. In this study, the mechanism and interaction between Dolichos lablab L. protein (DLP) obtained from nine treatments and three tea polyphenol monomers (EGCG, ECG, and EGC) were investigated. The results showed that the fluorescence of DLP was noticeably quenched and exhibited static quenching after the addition of polyphenols. DLP exhibited 1-2 binding sites for EGCG and ECG, but weakly binding to EGC (<1). The binding sites of DLP-TP were found to be in close proximity to the tyrosine residues, primarily interacting through hydrophobic interactions, van der Waals forces, and hydrogen bonds. The antioxidant capacity of DLP-TP compound was significantly improved after digestion. ECG showed a strong resistance to intestinal digestion. Compared with ECG (653.456 µg/mL), the content of free tea polyphenols of 20/40 kHz-ECG after digestion was 732.42 µg/mL. DLP-TP complexes significantly improved the storage stability, thermal stability, and bioaccessibility of tea polyphenols. The interaction between TP and DLP, as a protein-polyphenol complex, has great potential for application in preparing emulsion delivery systems due to their antioxidant activity and improved stability.


Asunto(s)
Dolichos , Polifenoles , Polifenoles/química , Té/química , Antioxidantes/química , Sitios de Unión
2.
Genes (Basel) ; 13(2)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35205304

RESUMEN

As a centre enzyme in fatty acid activation, acyl-CoA synthetase long-chain family member 1 (ACSL1) plays an important role in body lipid homeostasis. However, the functions of ACSL1 in the subcutaneous adipogenesis of pigs are largely unknown. In the present study, we found that the expression of ACSL1 significantly increased during the process of porcine preadipocyte differentiation. Moreover, silencing of ACSL1 in preadipocytes decreased levels of triglyceride and adipogenic-related markers, including FABP4, APOE, and FASN (p < 0.01), and simultaneously increased levels of lipolytic-related markers, such as ATGL and HSL (p < 0.05). Conversely, overexpression of ACSL1 in preadipocytes increased levels of triglyceride and FABP4, APOE, and FASN (p < 0.01), and reduced levels of ATGL and HSL (p < 0.05). Luciferase reporter assays revealed that ACSL1 is a target of miR-218-5p, which can reduce the mRNA and protein levels of ACSL1 by directly binding the 3' untranslated region of ACSL1. Furthermore, miR-218-5p has an inhibition role in porcine preadipocyte differentiation by suppressing ACSL1 expression. Taken together, these data provide insights into the mechanism of the miR-218-5p/ACSL1 axis in regulating subcutaneous fat deposition of pigs.


Asunto(s)
Adipogénesis , MicroARNs , Regiones no Traducidas 3' , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Apolipoproteínas E/genética , MicroARNs/metabolismo , Porcinos/genética , Triglicéridos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-30410752

RESUMEN

BACKGROUND: Preadipocyte differentiation plays a critical role in subcutaneous fat deposition in pigs. However, the roles of different RNAs, such as messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differentiation process of subcutaneous preadipocytes, are still largely unclear. In the present study, a transcriptome analysis, including the analysis of mRNAs, lncRNAs, and circRNAs, during different differentiation stages, namely, day 0 (D0), day 2 (D2), day 4 (D4), and day 8 (D8), of subcutaneous preadipocytes from Chinese Erhualian pigs was performed. RESULTS: A total of 1554, 470, 1344, 1777, and 676 differentially expressed (DE) mRNAs, 112, 58, 95, 136, and 93 DE lncRNAs, and 902, 787, 710, 932, and 850 DE circRNAs were identified between D2 and D0, between D4 and D2, between D8 and D4, between D4 and D0, and between D8 and D0, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire differentiation process were mainly involved in lipid metabolic and cell differentiation processes. Additionally, co-expression network analysis identified the potential lncRNAs related to adipogenesis, e.g., MSTRG.131380 and MSTRG.62128. CONCLUSIONS: Our study provides new insights of the expression changes of RNAs during adipogenic differentiation, which might contribute to the phenotype of subcutaneous adipogenesis. These results greatly improve our understanding of the molecular mechanisms regulating subcutaneous fat deposition in pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA