Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 187(20): 5572-5586.e15, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39197451

RESUMEN

DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.


Asunto(s)
Antivirales , Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Farmacorresistencia Viral , Simulación de Dinámica Molecular , Proteínas Virales , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Proteínas Virales/metabolismo , Proteínas Virales/química , Humanos , ADN Viral/metabolismo , Exodesoxirribonucleasas
2.
Cell ; 184(10): 2605-2617.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33831372

RESUMEN

Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19 , Evolución Molecular , Evasión Inmune/inmunología , Huésped Inmunocomprometido , Fragmentos Fab de Inmunoglobulinas/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
J Virol ; 90(15): 6799-807, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27194767

RESUMEN

UNLABELLED: Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE: Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the arenavirus envelope glycoprotein (GPC) have recently been identified and shown to block GPC-mediated fusion of the viral and cellular endosomal membranes, thereby preventing virus entry into the host cell. Genetic studies suggest that these inhibitors act through a unique pH-sensing intersubunit interface in GPC, but atomic-level structural information is unavailable. In this report, we utilize novel photoreactive fusion inhibitors and photoaffinity labeling to obtain direct physical evidence for inhibitor binding at this critical interface in Lassa virus GPC. Future identification of modified residues at the inhibitor-binding site will help elucidate the molecular basis for fusion activation and its inhibition and guide the development of effective therapies to treat arenaviral hemorrhagic fevers.


Asunto(s)
Antivirales/farmacología , Fusión de Membrana/efectos de los fármacos , Señales de Clasificación de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Concentración de Iones de Hidrógeno , Virus Lassa , Subunidades de Proteína , Células Vero , Proteínas del Envoltorio Viral/química
4.
Science ; 375(6578): eabl6251, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34855508

RESUMEN

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Vacuna BNT162/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas , Microscopía por Crioelectrón , Cristalografía por Rayos X , Epítopos , Evolución Molecular , Humanos , Modelos Moleculares , Mutación , Polisacáridos/análisis , Unión Proteica , Dominios Proteicos , Receptores de Coronavirus/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Pseudotipado Viral
5.
bioRxiv ; 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33200128

RESUMEN

The SARS-CoV-2 viral spike (S) protein mediates attachment and entry into host cells and is a major target of vaccine and drug design. Potent SARS-CoV-2 neutralizing antibodies derived from closely related antibody heavy chain genes (IGHV3-53 or 3-66) have been isolated from multiple COVID-19 convalescent individuals. These usually contain minimal somatic mutations and bind the S receptor-binding domain (RBD) to interfere with attachment to the cellular receptor angiotensin-converting enzyme 2 (ACE2). We used antigen-specific single B cell sorting to isolate S-reactive monoclonal antibodies from the blood of a COVID-19 convalescent individual. The seven most potent neutralizing antibodies were somatic variants of the same IGHV3-53-derived antibody and bind the RBD with varying affinity. We report X-ray crystal structures of four Fab variants bound to the RBD and use the structures to explain the basis for changes in RBD affinity. We show that a germline revertant antibody binds tightly to the SARS-CoV-2 RBD and neutralizes virus, and that gains in affinity for the RBD do not necessarily correlate with increased neutralization potency, suggesting that somatic mutation is not required to exert robust antiviral effect. Our studies clarify the molecular basis for a heavily germline-biased human antibody response to SARS-CoV-2.

6.
Nat Commun ; 9(1): 1884, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760382

RESUMEN

While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Arenavirus del Nuevo Mundo/inmunología , Fiebre Hemorrágica Americana/prevención & control , Fragmentos Fab de Inmunoglobulinas/química , Virus Junin/inmunología , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Arenavirus del Nuevo Mundo/genética , Sitios de Unión de Anticuerpos , Reacciones Cruzadas , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Sueros Inmunes/química , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Virus Junin/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Receptores de Transferrina/química , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación
7.
PLoS One ; 7(11): e51114, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226473

RESUMEN

The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP) in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.


Asunto(s)
Glicoproteínas/metabolismo , Virus Junin/metabolismo , Fusión de Membrana , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Chlorocebus aethiops , Furina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lípidos/química , Proteínas Mutantes/metabolismo , Pruebas de Neutralización , Conformación Proteica , Proteolípidos/metabolismo , Proteolisis , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Células Vero , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA