RESUMEN
RNA-binding proteins (RBPs) are significantly dysregulated in glioma. In this study, we demonstrated the upregulation of Nuclear cap-binding subunit 3 (NCBP3) in glioma tissues and cells. Further, knockdown of NCBP3 inhibited the malignant progression of glioma. NCBP3 directly bound to small nucleolar RNA host gene 6 (SNHG6) and stabilized SNHG6 expression. In contrast, the gastrulation brain homeobox 2 (GBX2) transcription factor was downregulated in glioma tissues and cells. SNHG6 inhibited GBX2 transcription by mediating the H3K27me3 modification induced by polycomb repressive complex 2 (PRC2). Moreover, GBX2 decreased the promoter activities and downregulated the expression of the flotillin protein family 1 (FLOT1) oncogene. In conclusion, NCBP3/SNHG6 inhibits GBX2 transcription in a PRC2-dependent manner to facilitate the malignant progression of gliomas.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Interferencia de ARN , ARN Largo no Codificante/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Glioma/patología , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Asunto(s)
Factor de Transcripción CDX2/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , ARN sin Sentido , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Glioma/metabolismo , Glioma/mortalidad , Glioma/patología , Humanos , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Upstream ORF (uORF) is a translational initiation element located in the 5'UTR of eukaryotic mRNAs. Studies have found that uORFs play an important regulatory role in many diseases. Based on The Cancer Genome Atlas database, the results of our experiments and previous research evidence, we investigated transcription factor AP-4 (TFAP4) and its uORF, LIM and SH3 protein 1 (LASP1), long noncoding RNA 00520 (LINC00520), and microRNA (miR)-520f-3p as candidates involved in glioma malignancy, which is a poorly understood process. Both TFAP4-66aa-uORF and miR-520f-3p were downregulated, and TFAP4, LASP1, and LINC00520 were highly expressed in glioma tissues and cells. TFAP4-66aa-uORF or miR-520f-3p overexpression or TFAP4, LASP1, or LINC00520 knockdown inhibited glioma cell proliferation, migration, and invasion, but promoted apoptosis. TFAP4-66aa-uORF inhibited the translation of TFAP4 by binding to the TFAP4 mRNA. MicroRNA-520f-3p inhibited TFAP4 expression by binding to its 3'UTR. However, LINC00520 could promote the expression of TFAP4 by competitively binding to miR-520f-3p. In addition, TFAP4 transcriptionally activated LASP1 and LINC00520 expression by binding to their promoter regions, forming a positive feedback loop of TFAP4/LINC00520/miR-520f-3p. Our findings together indicated that TFAP4-66aa-uORF inhibited the TFAP4/LINC00520/miR-520f-3p feedback loop by directly inhibiting TFAP4 expression, subsequently leading to inhibition of glioma malignancy. This provides a basis for developing new therapeutic approaches for glioma treatment.
Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Glioma/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3'/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas del Citoesqueleto/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Células HEK293 , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
The blood-tumor barrier (BTB) contributes to poor therapeutic efficacy by limiting drug uptake; therefore, elevating BTB permeability is essential for glioma treatment. Here, we prepared astrocyte microvascular endothelial cells (ECs) and glioma microvascular ECs (GECs) as in vitro blood-brain barrier (BBB) and BTB models. Upregulation of METTL3 and IGF2BP3 in GECs increased the stability of CPEB2 mRNA through its m6A methylation. CPEB2 bound to and increased SRSF5 mRNA stability, which promoted the ETS1 exon inclusion. P51-ETS1 promoted the expression of ZO-1, occludin, and claudin-5 transcriptionally, thus regulating BTB permeability. Subsequent in vivo knockdown of these molecules in glioblastoma xenograft mice elevated BTB permeability, promoted doxorubicin penetration, and improved glioma-specific chemotherapeutic effects. These results provide a theoretical and experimental basis for epigenetic regulation of the BTB, as well as insight into comprehensive glioma treatment.
Asunto(s)
Neoplasias Encefálicas , Glioma , Metiltransferasas , Proteínas de Unión al ARN , Factores de Empalme Serina-Arginina , Animales , Astrocitos/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Células Endoteliales/metabolismo , Epigénesis Genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Microvasos/metabolismo , Permeabilidad , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Background: Traumatic brain injury (TBI) is a brain function change caused by external forces, which is one of the main causes of death and disability worldwide. The aim of this study was to identify early diagnostic markers and potential therapeutic targets for TBI. Methods: Differences between TBI and controls in GSE89866 and GSE104687 were analyzed. The two groups of differentially expressed genes (DEGs) were combined for coexpression analysis, and the modules of interest were performed using enrichment analysis. Hub genes were identified by calculating area under curve (AUC) values of module genes, PPI network analysis, and functional similarity. Finally, the difference in immune cell infiltration between TBI and control was calculated by ssGSEA. Results: A total of 4,817 DEGs were identified in GSE89866 and 1,329 DEGs in GSE104687. They were clustered into nine modules. The genes of modules 1, 4, and 7 had the most crosstalk and were identified as important modules. Enrichment analysis revealed that they were mainly associated with neurodevelopment and immune inflammation. In the PPI network constructed by genes with top 50 AUC values in module genes, we identified the top 10 genes with the greatest connectivity. Among them, down-regulated RPL27, RPS4X, RPL23A, RPS15A, and RPL7A had similar functions and were identified as hub genes. In addition, DC and Tem were significantly up-regulated and down-regulated between TBI and control, respectively. Conclusion: We found that hub genes may have a diagnostic role for TBI. Molecular dysregulation mechanisms of TBI are associated with neurological and immune inflammation. These results may provide new ideas for the diagnosis and treatment of TBI.
RESUMEN
Studies have found that RNA-binding proteins (RBPs) are dysfunctional and play a significant regulatory role in the development of glioma. Based on The Cancer Genome Atlas database and the previous studies, we selected heterogeneous nuclear ribonucleoprotein (HNRNPD) as the research candidate and sought its downstream targeted genes. In the present study, HNRNPD, linc00707, and specific protein 2 (SP2) were highly expressed, while zinc fingers and homeboxes 2 (ZHX2) and miR-651-3p were remarkedly downregulated in glioma tissues and cells. HNRNPD, linc00707, and SP2 knockdown or ZHX2 and miR-651-3p overexpression suppressed glioma cells proliferation, migration, and invasion and vasculogenic mimicry (VM) formation. Knockdown of HNRNPD increased the stability of ZHX2 mRNA. ZHX2 bound to the promoter region of linc00707 and negatively regulate its expression. Linc00707 could bind with miR-651-3p, while miR-651-3p bound to the 3' untranslated region (3'UTR) of SP2 mRNA to negatively regulate its expression. The transcription factor SP2 directly bound to the promoter regions of the VM formation-related proteins MMP2, MMP9, and VE-cadherin, playing a role in promoting transcription in order to regulate the VM formation ability of glioma cells.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Imitación Molecular , Neovascularización Patológica , ARN Largo no Codificante/metabolismo , Factor de Transcripción Sp2/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HEK293 , Ribonucleoproteína Nuclear Heterogénea D0/genética , Proteínas de Homeodominio/genética , Humanos , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , Transducción de Señal , Factor de Transcripción Sp2/genética , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Angiogenesis plays an important role in the progress of glioma. RNA-binding proteins (RBPs) and circular RNAs (circRNAs), dysregulated in various tumors, have been verified to mediate diverse biological behaviors including angiogenesis. METHODS: Quantitative real-time PCR (qRT-PCR) and western blot were performed to detect the expression of SRSF10, circ-ATXN1, miR-526b-3p, and MMP2/VEGFA. The potential function of SRSF10/circ-ATXN1/miR-526b-3p axis in glioma-associated endothelial cells (GECs) angiogenesis was further studied. RESULTS: SRSF10 and circ-ATXN1 were significantly upregulated in GECs compared with astrocyte-associated endothelial cells (AECs). Knockdown of SRSF10 or circ-ATXN1 significantly inhibited cell viability, migration and tube formation of GECs where knockdown of SRSF10 exerted its function by inhibiting the formation of circ-ATXN1. Moreover, the combined knockdown of SRSF10 and circ-ATXN1 significantly enhanced the inhibitory effects on cell viability, migration and tube formation of GECs, compared with knockdown of SRSF10 and circ-ATXN1, respectively. MiR-526b-3p was downregulated in GECs. Circ-ATXN1 functionally targeted miR-526b-3p in an RNA-induced silencing complex. Up-regulation of miR-526b-3p inhibited cell viability, migration and tube formation of GECs. Furthermore, miR-526b-3p affected the angiogenesis of GECs via negatively regulating the expression of MMP2/VEGFA. CONCLUSION: SRSF10/circ-ATXN1/miR-526b-3p axis played a crucial role in regulating the angiogenesis of GECs. The above findings provided new targets for anti-angiogenic therapy in glioma.
Asunto(s)
Ataxina-1/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Proteínas de Ciclo Celular/metabolismo , Glioma/irrigación sanguínea , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/genética , Neovascularización Patológica , ARN Circular/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Apoptosis , Ataxina-1/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/genética , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Metaloproteinasa 2 de la Matriz/genética , ARN Circular/antagonistas & inhibidores , ARN Circular/genética , Proteínas Represoras/genética , Factores de Empalme Serina-Arginina/genética , Células Tumorales CultivadasRESUMEN
Background: Molecular-targeted therapy plays an important role in the combined treatment of breast cancer. Long noncoding RNA (LncRNA) plays a significant role in regulating breast cancer progression. The present study is to reveal the potential roles and molecular mechanism that the secretory carrier-associated membrane protein 1-transcript variant 2 (SCAMP1-TV2) has in breast. Methods: Cell Counting Kit-8 (CCK-8), RNA Immunoprecipitation (RIP), and RNA pull-down assays were employed to determine the interactions between SCAMP1-TV2 and Pumilio RNA binding family member 2 (PUM2). The luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were used to get to know the effect of human insulinoma-associated 1 (INSM1) directly on the SAM and SH3 domain containing 1 (SASH1) promoter. Results: Silenced SCAMP1-TV2 inhibited the proliferation, migration, and invasion of breast cancer cells, and promoted cell apoptosis. Meanwhile, SCAMP1-TV2 downregulation decreased its binding to PUM2 and increased the binding of PUM2 to INSM1 messenger RNA (mRNA), thus promoting the degradation of INSM1 mRNA. Silencing INSM1 decreased its inhibitory effect on SASH1 transcription and inhibited the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. The xenograft tumor growth in a nude mice was significantly inhibited by the silencing of SCAMP1-TV2 in combination with the overexpression of PUM2. Conclusions: SCAMP1-TV2/PUM2/INSM1 pathway plays an important role in regulating the biological behavior of breast cancer cells.
RESUMEN
Glioma, a common malignant tumour of the human central nervous system, has poor prognosis and limited treatment options. Dissecting the biological mechanisms underlying glioma pathogenesis can facilitate the development of better therapies. Here, we investigated the endogenous expression of BTB and CNC homolog 2 (BACH2), fused in sarcoma (FUS), TSLNC8 and microRNA (miR)-10b-5p in glioma cells and tissues. We studied the interaction between BACH2 and FUS and its contribution to glioma progression. We demonstrated that the interaction between BACH2 and FUS promoted glioma progression via transcriptional inhibition of TSLNC8. Overexpression of TSLNC8 restrained glioma progression by suppressing miR-10b-5p. Binding of TSLNC8 to miR-10b-5p attenuated the suppression of WWC family member 3 (WWC3) by miR-10b-5p and activated the Hippo signalling pathway. Growth of subcutaneous xenografts could be inhibited by knockdown of BACH2 or FUS, by overexpressing TSLNC8 or a combination of the three, also leading to a prolonged survival in nude mice. Our results indicate that the BACH2 and FUS/TSLNC8/miR-10b-5p/WWC3 axis is responsible for glioma development and could serve as a potential target for the development of new glioma therapies.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Glioma/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Desnudos , MicroARNs/genética , Mapas de Interacción de Proteínas , ARN Largo no Codificante/genéticaRESUMEN
Glioma is the most common form of primary central nervous malignant tumors. Vasculogenic mimicry (VM) is a blood supply channel that is different from endothelial blood vessels in glioma. VM is related to tumor invasion and metastasis. Therefore, it plays an important role to target therapy for glioma VM. Our experimental results showed abnormal expression of UBE2I, PUM2, CEBPD, and DSG2 in glioma cells. The Co-IP and Immunofluorescence staining were used to detect that PUM2 can be modified by SUMO2/3. The interaction between PUM2 and CEBPD mRNA was detected by the RIP assays. The interaction between transcription factor CEBPD and promoter region of DSG2 was detected by the ChIP assays and luciferase assays. The capacity for migration in glioma cells was observed by the laser holographic microscope. The capacity for invasion in glioma cells was detected by Transwell method. The VM in glioma cells was detected by three-dimensional cell culture method. The experimental results found that the upregulation of UBE2I in glioma tissues and cells promotes the SUMOylation of PUM2, which decreases not only the stability of PUM2 protein but also decreases the inhibitory effect of PUM2 on CEBPD mRNA. The upregulation of CEBPD promotes the binding to the upstream promoter region of DSG2 gene, further upregulates the expression of DSG2, and finally promotes the development of glioma VM. In conclusion, this study found that the UBE2I/PUM2/CEBPD/DSG2 played crucial roles in regulating glioma VM. It also provides potential targets and alternative strategies for combined treatment of glioma.
RESUMEN
Glioma is the most common primary malignancy in the brain, and vasculogenic mimicry (VM) is one of the blood supply methods. Here we investigated the possibility that lncRNAs regulate the stability of transcription factors through the SMD pathway, which affects proliferation, migration, invasion, and the ability to form VMs in glioma. Expression of PABPC5, HCG15, and ZNF331 was detected by real-time qPCR or western blot in glioma. Cell Counting Kit-8, Transwell assays, and in vitro VM tube formation were used to investigate PABPC5, HCG15, and ZNF331 function in cell proliferation, migration, invasion, and VM, respectively. ChIP assays were used to ascertain the interaction betweenZNF331 and LAMC2 or PABPC5. PABPC5 and HCG15 were highly expressed in glioma cells. ZNF331 was lowly expressed. PABPC5 bound HCG15 to increase its stability. Knockdown HCG15 reduced the degradation of ZNF331 mRNA by the SMD pathway. ZNF331 inhibited transcription through binding to the promoter region of LAMC2 and PABPC5 and inhibited the ability to form VMs in glioma cells. The PABPC5/HCG15/ZNF331 feedback loop plays an important role in regulating VM formation in glioma and provides new targets for glioma treatment.
RESUMEN
Warburg effect is a hallmark of cancer cells, wherein glycolysis is preferred over oxidative phosphorylation even in aerobic conditions. Reprogramming of glycometabolism is especially crucial for malignancy in glioma. RNA-binding proteins and long noncoding RNAs are important for aerobic glycolysis during malignant transformation. Thus, we determined the expression and function of RNA-binding protein Lin28A, long noncoding RNA SNHG14, and transcription factor IRF6 in human glioma cells to elucidate the mechanism(s) underlying their role in glycolysis. Quantitative real-time polymerase chain reaction and western blotting showed that Lin28A and SNHG14 were overexpressed and IRF6 was downregulated in glioma. Depleting Lin28A from cells decreased the stability and expression of SNHG14. Furthermore, depleting SNHG14 reduced IRF6 mRNA degradation by targeting its 3' untranslated region and inhibiting STAU1-mediated degradation, thereby increasing the expression of IRF6. PKM2 is an important enzyme in aerobic glycolysis, and GLUT1 is the primary transporter that facilitates glucose uptake. IRF6 inhibited the transcription of PKM2 and GLUT1, thereby impairing glycolysis and cell proliferation and inducing apoptosis in glioma. Notably, depleting Lin28A and SNHG14 and overexpressing IRF6 reduced the growth of xenograft tumors in vivo and prolonged the survival of nude mice. Taken together, our data revealed that the Lin28A/SNHG14/IRF6 axis is crucial for reprogramming glucose metabolism and stimulating tumorigenesis in glioma cells. Thus, targeting this axis might help in the development of a novel therapeutic strategy for glioma metabolism.
Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Glucólisis , Factores Reguladores del Interferón/metabolismo , Estabilidad del ARN/genética , ARN Largo no Codificante/genética , Aerobiosis , Animales , Neoplasias Encefálicas/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/patología , Transportador de Glucosa de Tipo 1/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Regiones Promotoras Genéticas/genética , Proteolisis , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Supervivencia , Hormonas Tiroideas/metabolismo , Regulación hacia Arriba/genética , Proteínas de Unión a Hormona TiroideRESUMEN
Glioblastomas are the most common and malignant intracranial tumors with a low survival rate. Dysregulation of long non-coding RNAs and RNA-binding protein causes various diseases, including cancers. However, the function of LINC00680 and TTN-AS1 in the progression of glioblastomas is still elusive. In this study, we detected that LINC00680 and TTN-AS1 were upregulated in glioblastoma cells. RNA-binding protein EIF4A3 could prolong the half-life of LINC00680 and TTN-AS1. Knockdown of EIF4A3, LINC00680, and TTN-AS1 impaired proliferation, migration, and invasion and inhibited the growth of tumor in vivo and promoted apoptosis of glioblastoma cells. miR-320b was proven to be a target of LINC00680 and TTN-AS1. They interacted with miR-320b as competing endogenous RNAs, which resulted in the reduction of binding between transcriptional factor EGR3 (early growth response 3) mRNA and miR-320b. The accumulation of EGR3 promoted expression of plakophilin (PKP)2, which could activate the epidermal growth factor receptor (EFGR) pathway, leading to the malignant biological behaviors of glioblastoma cells. In summary, LINC00680 and TTN-AS1 promoted glioblastoma cell malignant biological behaviors via the miR-320b/EGR3/PKP2 axis by being stabilized by EIF4A3, which may provide a novel strategy for glioblastoma therapy.
RESUMEN
The existence of blood-tumor barrier (BTB) severely restricts the efficient delivery of antitumor drugs to cranial glioma tissues. Various strategies have been explored to increase BTB permeability. RNA-binding proteins and circular RNAs have recently emerged as potential regulators of endothelial cells functions. In this study, RNA-binding protein KH RNA-binding domain containing, signal transduction associated 3 (KHDRBS3) and circular RNA DENND4C (cDENND4C) were enriched in GECs. KHDRBS3 bound to cDENND4C and increased its stability. The knockdown of cDENND4C increased the permeability of BTB via downregulating the expressions of tight junction-related proteins. The miR-577 was lower expressed in GECs. The overexpressed miR-577 increased the permeability of BTB by reducing the tight junction-related protein expressions, and vice versa. Furthermore, cDENND4C acted as a molecular sponge of miR-577, which bound to miR-577 and inhibited its negative regulation of target genes ZO-1, occludin and claudin-1 to regulate BTB permeability. Single or combined treatment of KHDRBS3, cDENND4C, and miR-577 effectively promoted antitumor drug doxorubicin (DOX) across BTB to induce apoptosis of glioma cells. Collectively, the present study indicated that KHDRBS3 could regulate BTB permeability through the cDENND4C/miR-577 axis, which enhanced doxorubicin delivery across BTB. These findings may provide a novel strategy for chemotherapy of brain tumors.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Doxorrubicina/farmacología , Glioma/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Claudina-1/metabolismo , Doxorrubicina/metabolismo , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , MicroARNs/genética , Ocludina/metabolismo , Permeabilidad , ARN Circular/genética , Proteínas de Unión al ARN/genética , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
There is growing evidence that the long non-coding RNAs(lncRNAs) play an important role in the biological behaviors of glioblastoma cells. In this study, we elucidated the function and possible effect and molecular mechanisms of lncRNA-Linc-00313 on the biological behaviors of glioblastoma cells as well as UPF1 function as a RNA-binding protein to enhance its stability. Here, we used qRT-PCR and western blot to measure the expression, cell Transfection to disrupt the expression of genes, cell viability analysis, quantization of apoptosis, cell migration, and invasion assays, Reporter vectors construction and luciferase assays to investigate the malignant biological behaviors of cells, human lncRNA microarrays, RNA-Immunoprecipitation, dual-luciferase gene reporter assay, half-life assay and chromatin immunoprecipitation to verify the binding sites, tumor xenograft implantation for in vivo experiment, SPSS 18.0 statistical software for data statistics. UPF1 and Linc-00313 were both upregulated in glioma tissues and cells. Knockdown of UPF1 or Linc-00313 significantly inhibited malignant biological behaviors of glioma cells by regulating miR-342-3p and miR-485-5p, which are downregulated and functioned as tumor suppressors in glioma. Furthermore, Linc-00313 could acted as a competing endogenous RNA(ceRNA) to regulate the expression of Zic4 by binding to miR-342-3p and miR-485-5p. Interestingly, Zic4 could bind to the promoters of UPF1 and Linc-00313 respectively and upregulate the expression of them. These results indicated that a positive-feedback loop was formed in the regulation of the biological behaviors of glioma cells. The study is the first to prove that the UPF1-Linc-00313-miR-342-3p/miR-485-5p-Zic4-SHCBP1 pathway forms a positive-feedback loop and regulates the biological behaviors of U87 and U251 cells, which might provide a new therapeutic target for glioma.
Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , ARN Helicasas/genética , ARN Largo no Codificante/genética , Transactivadores/genética , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Glioblastoma/metabolismo , Glioblastoma/patología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Helicasas/metabolismo , ARN Largo no Codificante/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , TransfecciónRESUMEN
BACKGROUND: Long non-coding RNAs has been reported in tumorigenesis and play important roles in regulating malignant behavior of cancers, including glioma. METHODS: According to the TCGA database, we identified SNHG1, miRNA-154-5p and miR-376b-3p whose expression were significantly changed in the glioma samples. Furthermore, we investigated SNHG1, miRNA-154-5p and miR-376b-3p expression in clinical samples and glioma cell lines using qRT-PCR analysis and the correlation between them using RNA immunoprecipitation and dual-luciferase reporter. The underlying mechanisms of SNHG1 in glioma were also investigated using immunohistochemistry staining, Western blotting, chromatin immunoprecipitation, and RNA pulldown. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate malignant biological behaviors. RESULTS: We have elucidated the potential molecular mechanism of long non-coding RNA SNHG1 regulating the malignant behavior of glioma cells by binding to microRNA-154-5p or miR-376b-3p. Moreover, our deep-going results showed that FOXP2 existed as a direct downstream target of both microRNA-154-5p and miR-376b-3p; FOXP2 increased promoter activities and enhanced the expression of the oncogenic gene KDM5B; and KDM5B also acts as a RNA-binding protein to maintain the stability of SNHG1. CONCLUSION: Collectively, this study demonstrates that the SNHG1- microRNA-154-5p/miR-376b-3p- FOXP2- KDM5B feedback loop plays a pivotal role in regulating the malignant behavior of glioma cells.
Asunto(s)
Retroalimentación Fisiológica , Factores de Transcripción Forkhead/metabolismo , Glioma/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Animales , Carcinogénesis/metabolismo , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/metabolismo , Factores de Transcripción Forkhead/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Ratones , MicroARNs/genética , Proteínas Nucleares/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/biosíntesis , Análisis de SupervivenciaRESUMEN
BACKGROUND: Angiogenesis plays a critical role in the progression of glioma. Previous studies have indicated that RNA-binding proteins (RBPs) interact with RNAs and participate in the regulation of the malignant behaviors of tumors. As a type of endogenous non-coding RNAs, circular RNAs (circRNAs) are abnormally expressed in various cancers and are involved in diverse tumorigeneses including angiogenesis. METHODS: The expression levels of FUS, circ_002136, miR-138-5p, SOX13, and SPON2 were determined using quantitative real-time PCR (qRT-PCR) and western blot. Transient cell transfection was performed using the Lipofectamine 3000 reagent. The RNA-binding protein immunoprecipitation (RNA-IP) and the RNA pull-down assays were used to detect the interaction between FUS and circ_002136. The dual-luciferase reporter assay system was performed to detect the binding sites of circ_002136 and miR-138-5p, miR-138-5p and SOX13. The chromatin immunoprecipitation (ChIP) assays were used to examine the interactions between transcription factor SOX13 and its target proteins . RESULTS: We demonstrated that down-regulation of FUS or circ_002136 dramatically inhibited the viability, migration and tube formation of U87 glioma-exposed endothelial cells (GECs). MiR-138-5p was down-regulated in GECs and circ_002136 functionally targeted miR-138-5p in an RNA-induced silencing complex (RISC). Inhibition of circ_002136, combined with the restoration of miR-138-5p, robustly reduced the angiogenesis of GECs. As a target gene of miR-138-5p, SOX13 was overexpressed in GECs and was proved to be involved in circ_002136 and miR-138-5p-mediated angiogenesis in gliomas. In addition, we found that SOX13 was directly associated with and activated the SPON2 promoter, thereby up-regulating the expression of SPON2 at the transcriptional level. Knockdown of SPON2 suppressed the angiogenesis in GECs. More important, SOX13 activated the FUS promoter and increased its expression, forming a feedback loop. CONCLUSION: Our data suggests that the feedback loop of FUS/circ_002136/miR-138-5p/SOX13 played a crucial role in the regulation of angiogenesis in glioma. This also provides a potential target and an alternative strategy for combined glioma therapy.
Asunto(s)
Glioma/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , Proteína FUS de Unión a ARN/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Glioma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Proteína FUS de Unión a ARN/metabolismo , Transducción de Señal , TransfecciónRESUMEN
BACKGROUND: Glioma is the most common and lethal type of malignant brain tumor. Accumulating evidence has highlighted that RNA binding protein APOBEC1 complementation factor (A1CF) is involved in various cellular processes by modulating RNA expression, and acts as an oncogene in breast cancer. However, the function of A1CF in glioma remained unclear. METHODS: Quantitative RT-PCR and western blot analysis were employed to detect the expression levels of A1CF, lncRNA family with sequence similarity 224 member A (FAM224A), miR-590-3p, zinc finger protein 143 (ZNF143) and ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3) in glioma tissues and cell lines. The Cell Counting Kit-8 assay, migration and invasion assays, and flow cytometry analysis were conducted to evaluate the function of A1CF, FAM224A, miR-590-3p, ZNF143 and ASAP3 in the malignant biological behaviors of glioma cells. Moreover, luciferase reporter, RIP and ChIP assays were used to investigate the interactions among A1CF, FAM224A, miR-590-3p, ZNF143, ASAP3 and MYB. Finally, the xenograft tumor growth assay further ascertained the biological roles of A1CF, FAM224A and miR-590-3p in glioma cells. RESULTS: A1CF was upregulated and functioned as an oncogene via stabilizing and increasing FAM224A expression; moreover, high A1CF and FAM224A expression levels indicated a poorer prognosis for glioma patients. Conversely, miR-590-3p was downregulated and exerted a tumor-suppressive function in glioma cells. Inhibition of A1CF significantly restrained cell proliferation, migration and invasion, and promoted apoptosis by upregulating miR-590-3p in a FAM224A-dependent manner. FAM224A was a molecular sponge of miR-590-3p and they were in an RNA-induced silencing complex. ZNF143 was upregulated in glioma tissues and cell lines. MiR-590-3p could negatively modulate the expression of ZNF143 via binding to the ZNF143 3' UTR. Moreover, ZNF143 participated in miR-590-3p-induced tumor-suppressive activity on glioma cells. ASAP3 and MYB were transcriptionally activated by ZNF143, and importantly, ZNF143 could directly target the promoter of FAM224A and stimulate its expression, collectively forming a positive feedback loop. CONCLUSIONS: The present study clarifies that the A1CF-FAM224A-miR-590-3p-ZNF143 positive feedback loop conducts critical regulatory effects on the malignant progression of glioma cells, which provides a novel molecular target for glioma therapy.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Interferencia de ARN , Proteínas de Unión al ARN/genética , Transactivadores/genética , Regiones no Traducidas 3' , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Silenciador del Gen , Genes Reporteros , Glioma/patología , Xenoinjertos , Humanos , Ratones , Estabilidad del ARNRESUMEN
The blood-tumor barrier (BTB) limits the transport of chemotherapeutic drugs to brain tumor tissues and impacts the treatment of glioma. Long non-coding RNAs play critical roles in various biological processes of tumors; however, the function of these in BTB permeability is still unclear. In this study, we have identified that long intergenic non-protein coding RNA 174 (linc00174) was upregulated in glioma endothelial cells (GECs) from glioma tissues. Additionally, linc00174 was also upregulated in GECs from the BTB model in vitro. Knock down of linc00174 increased BTB permeability and reduced the expression of the tight junction-related proteins ZO-1, occludin, and claudin-5. Both bioinformatics data and results of luciferase reporter assays demonstrated that linc00174 regulated BTB permeability by binding to miR-138-5p and miR-150-5p. Furthermore, knock down of linc00174 inhibited FOSL2 expression via upregulating miR-138-5p and miR-150-5p. FOSL2 interacted with the promoter regions and upregulated the promoter activity of ZO-1, occludin, claudin-5, and linc00174 in GECs. In conclusion, the present study demonstrated that the linc00174/miR-138-5p (miR-150-5p)/FOSL2 feedback loop played an essential role in regulating BTB permeability.