Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 384, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438793

RESUMEN

BACKGROUND: Single Nucleotide Polymorphisms (SNPs) in candidate autophagy gene BECN1 could influence its functions thereby autophagy process. BECN1 noncoding SNPs were found to be significantly associated with neurodegenerative disease and type 2 diabetes mellitus. This study aimed to develop a simultaneous genotyping technique for two BECN1 SNPs (rs10512488 and rs11552192). METHODS: A mutagenic primer-based approach was used to introduce a NdeI restriction site to genotype rs10512488 by Artificial-Restriction Fragment Length Polymorphism (A-RFLP) along with rs11552192 by Polymerase Chain Reaction (PCR)-RFLP. Multiplexing PCR and restriction digestion reactions were set up for simultaneous genotyping of both SNPs in 100 healthy individuals. Genotypic and allele frequencies were manually calculated, and the Hardy-Weinberg Equilibrium was assessed using the chi-square test. RESULTS: We successfully developed PCR and RFLP conditions for the amplification and restriction digestion of both SNPs within the same tube for genotyping. The results of genotyping by newly developed multiplexing PCR-RFLP technique were concordant with the genotypes obtained by Sanger sequencing of samples. Allelic frequencies of rs10512488 obtained were 0.15 (A) and 0.85 (G), whereas allelic frequencies of rs11552192 were 0.16 (T) and 0.84 (A). CONCLUSION: The newly developed technique is rapid, cost-effective and time-saving for large-scale applications compared to sequencing methods and would play an important role in low-income settings. For the first time, allelic frequencies of rs10512488 and rs11552192 were reported among the North Indian population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Humanos , Polimorfismo de Longitud del Fragmento de Restricción , Mutágenos , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena de la Polimerasa Multiplex , Genotipo , Beclina-1
2.
Environ Monit Assess ; 196(7): 606, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856948

RESUMEN

Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.


Asunto(s)
Ecosistema , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Adsorción
3.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992133

RESUMEN

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Asunto(s)
Péptidos , Agua , Agua/química , Péptidos/química , Organofosfatos , Aminoácidos/química , Fosfatos/química , Ésteres
4.
Langmuir ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622301

RESUMEN

The emergence of nanoparticles in biomedical applications has made their interactions with proteins inevitable. Nanoparticles conjugated with proteins and peptide-based constructs form an integral part of nanotherapeutics and have recently shown promise in treating a myriad of diseases. The proper functioning of proteins is critical to achieve their biological functions. However, interface issues result in the denaturation of proteins, and the loss of orientation and steric hindrance can adversely affect the function of the conjugate. Furthermore, surface-induced denaturation also triggers protein aggregation, resulting in amyloid-like species. Understanding the mechanistic underpinnings of protein-nanoparticle interactions and controlling their interfacial characteristics are critical and challenging due to the complex nature of the conjugates. In this milieu, we demonstrate that ionic liquids can be suitable candidates for stabilizing protein-nanoparticle interactions by virtue of their excellent protein-preserving properties. We also probe the previously unexplored mechanism of ion-mediated stabilization of the protein molecules on the nanoparticle surface. The protein-nanoparticle conjugates consist of lysozyme and choline-based ionic liquids characterized by optical and electron microscopy techniques combined with surface-sensitive plasmon-enhanced Raman spectroscopy. Furthermore, atomistic molecular dynamics simulations of the conjugates delineate interfacial interactions of the protein molecules and the modulation by the ions, particularly the conformational changes and the dynamic correlation when the protein and specific ionic liquid molecules are adsorbed on the nanoparticle surface. The combined experimental and computational studies showed the synergistic behavior of the ions of the ionic liquids, specifically the orientation and coverage of the anions aided by the cations to control the surface interactions and hence the overall protein stability. These studies pave the way for using ionic liquids, particularly their biocompatible counterparts in nanoparticle-based complexes, as stabilizing agents for biomedical applications.

5.
J Asthma ; : 1-7, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009708

RESUMEN

Objective: Genetic background and environmental stimuli play an important role in asthma, which is an individual's hyper-responsiveness to these stimuli leading to airway inflammation. Autophagy Related Gene 5 (ATG5) plays a critical role in the autophagy pathway and has been shown to be involved in asthma. The genetic polymorphisms in the ATG5 have been reported to predispose individuals to asthma. The role of single nucleotide polymorphism rs17587319 (C/G) of ATG5 in asthma has not been studied so far.Materials and methods: In this study, we in silico analysed rs17587319 (C/G) using web-based tools Human Splice Finder (HSF) and RegulomeDB and further a case-control study was conducted that included 187 blood samples (94 asthmatic and 93 healthy controls).Results: In silico analysis suggested alteration of splicing signals by this intronic variant. The samples were genotyped by applying the PCR-RFLP method. The MAF obtained was 0.022 and 0.043 in healthy controls and asthmatic individuals, respectively. The statistical analysis revealed no association (allelic model, OR = 2.02, 95%CI = 0.59-6.83, p = 0.25; co-dominant model, OR = 2.06, 95%CI = 0.6-7.12, p = 0.24) of rs17587319 (C/G) with the susceptibility to asthma in the north Indian population.Conclusions: In conclusion, rs17587319 (C/G) of ATG5 does not predispose individuals to asthma in our part of the world. Further studies are needed including more number of samples to ascertain the role of this polymorphism in asthma.

6.
Environ Monit Assess ; 195(3): 389, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781554

RESUMEN

Water, an essential commodity available to mankind, is constantly under pollution threat. Industries are one of the major causative factors for its poor quality and therefore all organisms depending upon it, directly or indirectly are affected by various life-threatening problems. Thus, the treatment of discharge waste into the freshwater ecosystem is the dire need of the hour. The objective of the study is valorization of discarded snail shells for treatment of industrial wastewater. In the present study, industrial wastewater was treated using snail shell dust obtained from Bellamya bengalensis to assess change in water quality parameters. Various physico-chemical parameters like pH, total dissolved solids, electric conductivity, dissolved oxygen, biological oxygen demand, chemical oxygen demand, calcium, magnesium, total hardness, chlorides, bicarbonates, orthophosphates, sulfates, nitrates, and ammonia-N were assessed after its treatment with snail shell dust. Based on the present observation, it was concluded that all studied parameters except dissolved oxygen showed a remarkable decline in concentration after treatment with snail shell dust at the rate of 15 g per liter at the end of 4 days. Moreover, increased dissolved oxygen concentration also endorsed an enhancement in water quality. Statistical analysis through Pearson correlation and indices, viz., WQI (Water quality index) as well as Nemerow's Pollution index when applied to the present data, also supported an improvement in the water quality. The findings thus endorsed the utilization of snail shell dust as an eco-friendly technique and can be substituted as a sustainable method for the treatment of industrial wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Ecosistema , Análisis de la Demanda Biológica de Oxígeno , Oxígeno/análisis , Contaminantes Químicos del Agua/análisis
7.
Biotechnol Lett ; 43(5): 1019-1036, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33629143

RESUMEN

OBJECTIVES: To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. RESULTS: In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. CONCLUSIONS: Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism.


Asunto(s)
Proteínas Bacterianas/inmunología , Clostridium botulinum tipo B/inmunología , Animales , Proteínas Bacterianas/metabolismo , Botulismo/diagnóstico , Botulismo/inmunología , Botulismo/prevención & control , Clostridium botulinum/clasificación , Clostridium botulinum/inmunología , Clostridium botulinum tipo B/aislamiento & purificación , Clostridium botulinum tipo B/metabolismo , Reacciones Cruzadas , Medios de Cultivo/metabolismo , Sueros Inmunes/inmunología , Ratones , Proteómica
8.
Plant Mol Biol ; 100(4-5): 543-560, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31090025

RESUMEN

KEY MESSAGE: Functional characterization of WsMYC2 via artificial microRNA mediated silencing and transient over-expression displayed significant regulatory role vis-à-vis withanolides and stigmasterol biosyntheses in Withania somnifera. Further, metabolic intensification corroborated well with higher expression levels of putative pathway genes. Additionally, copious expression of WsMYC2 in response to exogenous elicitors resulted in enhanced withanolides production. Withania somnifera, a high value multipurpose medicinal plant, is a rich reservoir of structurally diverse and biologically active triterpenoids known as withanolides. W. somnifera has been extensively pursued vis-à-vis pharmacological and chemical studies. Nonetheless, there exists fragmentary knowledge regarding the metabolic pathway and the regulatory aspects of withanolides biosynthesis. Against this backdrop, a jasmonate-responsive MYC2 transcription factor was identified and functionally characterized from W. somnifera. In planta transient over-expression of WsMYC2 showed significant enhancement of mRNA transcript levels which corroborated well with the enhanced content of withanolides and stigmasterol. Further, a comparative analysis of expression levels of some of the genes of triterpenoid pathway viz. WsCAS, WsCYP85A, WsCYP90B and WsCYP710A in corroboration with the over-expression and silencing of WsMYC2 suggested its positive influence on their regulation. These corroboratory approaches suggest that WsMYC2 has cascading effect on over-expression of multiple pathway genes leading to the increased triterpenoid biosynthesis in infiltered plants. Further, the functional validation of WsMYC2 was carried out by artificial micro-RNA mediated silencing. It resulted in significant reduction of withanolides and stigmasterol levels, indicative of crucial role of WsMYC2 in the regulation of their biosyntheses. Taken together, these non-complementary approaches provided unambiguous understanding of the regulatory role of WsMYC2 in context to withanolides and stigmasterol biosyntheses. Furthermore, the upstream promoter of WsMYC2 presented several cis-regulatory elements primarily related to phytohormone responsiveness. WsMYC2 displayed inducible nature in response to MeJA. It had substantial influence on the higher expression of WsMYC2 which was in consonance with enhanced accumulation of withanolides.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Fitosteroles/biosíntesis , Triterpenos/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Clonación Molecular , Simulación por Computador , Ciclopentanos/metabolismo , Genes de Plantas , Redes y Vías Metabólicas , Oxilipinas/metabolismo , Filogenia , Fitosteroles/genética , Transducción de Señal
9.
BMC Plant Biol ; 19(1): 301, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291885

RESUMEN

BACKGROUND: Nothapodytes nimmoniana, a plant of pivotal medicinal significance is a source of potent anticancer monoterpene indole alkaloid (MIA) camptothecin (CPT). This compound owes its potency due to topoisomerase-I inhibitory activity. However, biosynthetic and regulatory aspects of CPT biosynthesis so far remain elusive. Production of CPT is also constrained due to unavailability of suitable in vitro experimental system. Contextually, there are two routes for the biosynthesis of MIAs: the mevalonate (MVA) pathway operating in cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. Determination of relative precursor flux through either of these pathways may provide a new vista for manipulating the enhanced CPT production. RESULTS: In present study, specific enzyme inhibitors of MVA (lovastatin) and MEP pathways (fosmidomycin) were used to perturb the metabolic flux in N. nimmoniana. Interaction of both these pathways was investigated at transcriptional level by using qRT-PCR and at metabolite level by evaluating secologanin, tryptamine and CPT contents. In fosmidomycin treated plants, highly significant reduction was observed in both secologanin and CPT accumulation in the range 40-57% and 64-71.5% respectively, while 4.61-7.69% increase was observed in tryptamine content as compared to control. Lovastatin treatment showed reduction in CPT (7-11%) and secologanin (7.5%) accumulation while tryptamine registered slight increase (3.84%) in comparison to control. These inhibitor mediated changes were reflected at transcriptional level via altering expression levels of deoxy-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA reductase (HMG). Further, mRNA expression of four more genes downstream to DXR and HMG of MEP and MVA pathways respectively were also investigated. Expression analysis also included secologanin synthase (SLS) and strictosidine synthase (STR) of seco-iridoid pathway. Present investigation also entailed development of an efficient in vitro multiplication system as a precursor to pathway flux studies. Further, a robust Agrobacterium-mediated transformed hairy root protocol was also developed for its amenability for up-scaling as a future prospect. CONCLUSIONS: Metabolic and transcriptional changes reveal differential efficacy of cytosolic and plastidial inhibitors in context to pathway flux perturbations on seco-iridoid end-product camptothecin. MEP pathway plausibly is the major precursor contributor towards CPT production. These empirical findings allude towards developing suitable biotechnological interventions for enhanced CPT production.


Asunto(s)
Antineoplásicos Fitogénicos/biosíntesis , Camptotecina/biosíntesis , Magnoliopsida/genética , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Plantas Medicinales
10.
Plant Mol Biol ; 96(1-2): 197-215, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29270891

RESUMEN

KEY MESSAGE: Comprehensive transcriptome analysis of leaf and root tissues of Nothapodytes nimmoniana unravels several putative pathway genes, transcription factors and CYPs related to camptothecin (CPT) biosynthesis. Additionally, post-transcriptional suppression by artificial microRNA (aMIR) of NnCYP76B6 (geraniol 10-hydroxylase) suggests its role in CPT biosynthesis. Tissue-specific LC-MS/MS analysis revealed the presence of secologanin as the central intermediate of MIA pathway in N. nimmoniana. Nothapodytes nimmoniana is a rich source of potent anticancer drug camptothecin (CPT) whose biosynthetic pathway is unresolved due to the lack of genomic and transcriptomic information. Present investigation entails deep transcriptome analysis of N. nimmoniana which led to identification of putative pathway genes and regulatory components involved in CPT biosynthesis. Using Illumina HiSeq 2500 sequencing platform a total of 31,172,889 (6.23 Gb) and 31,218,626 (6.24 Gb) raw reads were generated from leaf and root wood, respectively. These were assembled de novo into 138,183 unique contigs. Additionally, 16 cytochrome P450 transcripts related to secondary metabolism were also identified. Further, transcriptome data pool presented 1683 putative transcription factors of which transcripts corresponding to WRKY TFs were the most abundant (14.14%). A total of 2741 transcripts were differentially expressed out of which 478 contigs showed downregulation in root wood and 2263 contigs were up-regulated. Further, comparative analyses of 17 genes involved in CPT biosynthetic pathway were validated by qRT-PCR. On basis of intermediates, two distinct seco-iridoid pathways are involved in the biosynthesis of monoterpene indole alkaloids either through multiple isomers of strictosidinic acid or strictosidine. Tissue-specific LC-MS/MS analysis revealed the presence of secologanin as the central intermediate of MIA pathway in N. nimmoniana. Geraniol-10 hydroxylase (NnCYP76B6) an important enzyme in CPT biosynthesis which specifically shunts geraniol into the secologanin pathway was also cloned from the trancriptome resource. In planta transient expression of NnCYP76B6 showed a significant enhancement in mRNA transcript levels coincident with enhanced CPT accumulation. Further, artificial microRNA (aMIR) mediated downregulation of NnCYP76B6 resulted in reduction of mRNA transcript levels as well as CPT content in comparison to control. These empirical results suggest a plausible regulatory role for NnCYP76B6 in CPT biosynthesis and also establish a valuable repository for deciphering various structural, rate limiting and regulatory genes of CPT biosynthetic pathway.


Asunto(s)
Camptotecina/metabolismo , Magnoliopsida/metabolismo , Transcriptoma/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Magnoliopsida/genética , MicroARNs/genética
11.
Indian J Med Res ; 147(6): 603-610, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30168493

RESUMEN

Background & objectives: Botulism, a potentially fatal paralytic illness, is caused by the botulinum neurotoxins (BoNTs) secreted by Clostridium botulinum. It is an obligate anaerobic, Gram-positive, spore-forming bacterium. BoNTs are classified into seven serotypes based on the serological properties. Among these seven serotypes, A, B, E and, rarely, F are responsible for human botulism. The present study was undertaken to develop an enzyme-linked immunosorbent assay (ELISA)-based detection system for the detection of BoNT/E. Methods: The synthetic gene coding the light chain of BoNT serotype E (BoNT/E LC) was constructed using the polymerase chain reaction primer overlapping method, cloned into pQE30UA vector and then transformed into Escherichia coli M15 host cells. Recombinant protein expression was optimized using different concentrations of isopropyl-ß-D-1-thiogalactopyranoside (IPTG), different temperature and the rBoNT/E LC protein was purified in native conditions using affinity column chromatography. The purified recombinant protein was checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and further confirmed by western blot and matrix-assisted laser desorption ionization-tandem time-of-flight (MALDI-TOF). Polyclonal antibodies were generated against rBoNT/E LC using Freund's adjuvant in BALB/c mice and rabbit. Sandwich ELISA was optimized for the detection of rBoNT/E LC and native crude BoNT/E, and food matrix interference was tested. The developed antibodies were further evaluated for their specificity/cross-reactivity with BoNT serotypes and other bacterial toxins. Results: BoNT/E LC was successfully cloned, and the maximum expression was achieved in 16 h of post-induction using 0.5 mM IPTG concentration at 25°C. Polyclonal antibodies were generated in BALB/c mice and rabbit and the antibody titre was raised up to 128,000 after the 2nd booster dose. The developed polyclonal antibodies were highly specific and sensitive with a detection limit about 50 ng/ml for rBoNT/E LC and 2.5×10[3] MLD50 of native crude BoNT/E at a dilution of 1:3000 of mouse (capturing) and rabbit (revealing) antibodies. Further, different liquid, semisolid and solid food matrices were tested, and rBoNT/E LC was detected in almost all food samples, but different levels of interference were detected in different food matrices. Interpretation & conclusions: There is no immune detection system available commercially in India to detect botulism. The developed system might be useful for the detection of botulinum toxin in food and clinical samples. Further work is in progress.


Asunto(s)
Botulismo/diagnóstico , Clostridium botulinum/inmunología , Serogrupo , Animales , Australia , Clostridium botulinum/clasificación , Humanos , India , Ratones , Ratones Endogámicos BALB C , Proteómica , Conejos
12.
Curr Microbiol ; 75(5): 531-540, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29332140

RESUMEN

Diseases triggered by microorganisms can be controlled by vaccines, which need neutralizing antigens. Hence, it is very crucial to identify extremely efficient immunogens for immune prevention. Botulism, a fatal neuroparalytic disease, is caused by botulinum neurotoxins produced by the anaerobic, Gram-positive spore-forming bacteria, Clostridium botulinum. Food-borne botulism and iatrogenic botulism are caused by botulinum toxin. Wound botulism, infant botulism, and adult intestinal botulism are caused by primarily C. botulinum followed by secondary intoxication. To identify protective antigens, whole cell proteome of C. botulinum type B was separated by two-dimensional gel electrophoresis. 2-D gel of whole cell proteins was probed with hyper immune sera of whole cell proteins of C. botulinum types A, E, and F. Six cross immunoreactive proteins were identified. These immunoreactive proteins will be further tested for developing vaccines and serodiagnostic markers against botulism.


Asunto(s)
Toxinas Botulínicas/química , Botulismo/microbiología , Clostridium botulinum/química , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Botulismo/inmunología , Clostridium botulinum/genética , Clostridium botulinum/inmunología , Electroforesis en Gel Bidimensional , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones Endogámicos BALB C
13.
Br J Neurosurg ; 31(4): 478-480, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27340929

RESUMEN

Iatrogenic injury to the vertebral artery during cervical neurofibroma excision is rarely mentioned but may lead to potentially catastrophic complications. We reported a case of iatrogenic vertebral artery injury during cervical neurofibroma excision with management strategy.


Asunto(s)
Neoplasias de la Vaina del Nervio/cirugía , Neurofibroma/cirugía , Arteria Vertebral/lesiones , Adolescente , Aneurisma Falso/etiología , Aneurisma Falso/cirugía , Vértebras Cervicales/cirugía , Humanos , Enfermedad Iatrogénica , Complicaciones Intraoperatorias/etiología , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Cuadriplejía/etiología , Compresión de la Médula Espinal/etiología , Tomografía Computarizada por Rayos X , Arteria Vertebral/cirugía
14.
Heliyon ; 10(5): e26724, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434288

RESUMEN

The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.

15.
Acute Crit Care ; 39(1): 117-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38476064

RESUMEN

BACKGROUND: Point of care ultrasound (POCUS) is being explored for dynamic measurements like inferior vena cava collapsibility index (IVC-CI) and left ventricular outflow tract velocity time integral (LVOT-VTI) to guide anesthesiologists in predicting fluid responsiveness in the preoperative period and in treating post-induction hypotension (PIH) with varying accuracy. METHODS: In this prospective, observational study on included 100 adult patients undergoing elective surgery under general anesthesia, the LVOT-VTI and IVC-CI measurements were performed in the preoperative room 15 minutes prior to surgery, and PIH was measured for 20 minutes in the post-induction period. RESULTS: The incidence of PIH was 24%. The area under the curve, sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the two techniques at 95% confidence interval was 0.613, 30.4%, 93.3%, 58.3%, 81.4%, 73.6% for IVC-CI and 0.853, 83.3%, 80.3%, 57.1%, 93.8%, 77.4% for LVOT-VTI, respectively. In multivariate analysis, the cutoff value for IVC-CI was >51.5 and for LVOT-VTI it was ≤17.45 for predicting PIH with odd ratio [OR] of 8.491 (P=0.025) for IVCCI and OR of 17.427 (P<0.001) for LVOT. LVOT-VTI assessment was possible in all the patients, while 10% of patients were having poor window for IVC measurements. CONCLUSIONS: We recommend the use of POCUS using LVOT-VTI or IVC-CI to predict PIH, to decrease the morbidity of patients undergoing surgery. Out of these, we recommend LVOT-VTI measurements as it has showed a better diagnostic accuracy (77.4%) with no failure rate.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38660996

RESUMEN

SNPs could either cause a disorder or directly alter the efficacy of a particular treatment and act as biological markers. The SNP rs7587633 C/T present in the intronic region of the ATG16L1 gene has been studied for its role in psoriasis vulgaris and Palmoplantar pustulosis. To genotype rs7587633 C/T using PCR-RFLP no restriction site is present for any of the restriction enzymes at the SNP position. To develop an artificial-RFLP method for genotyping rs7587633 C/T, the forward primer was designed in such a way that it resulted in the creation of an EcoRI restriction site in the amplified product which could further be digested with EcoRI to find the genotype of the individual. The newly developed A-RFLP method was applied to genotype the SNP rs7587633 C/T in DNA samples of 100 healthy control individuals. The allelic and genotypic frequencies of the SNPs were 0.80(C), 0.20(T) and 65%(CC), 31%(CT) and 4%(TT), respectively. In conclusion, we developed an A-RFLP method to genotype the SNP rs7587633 C/T which is not present in any of the natural restriction sites and this method could be applied to genotype this SNP in various populations/diseases to find its role.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37518952

RESUMEN

Protein unfolding and aggregation are often correlated with numerous diseases such as Alzheimer's, Parkinson's, Huntington's, and other debilitating neurological disorders. Such adverse events consist of a plethora of competing mechanisms, particularly interactions that control the stability and cooperativity of the process. However, it remains challenging to probe the molecular mechanism of protein dynamics such as aggregation, and monitor them in real-time under physiological conditions. Recently, Raman spectroscopy and its plasmon-enhanced counterparts, such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have emerged as sensitive analytical tools that have the potential to perform molecular studies of functional groups and are showing significant promise in probing events related to protein aggregation. We summarize the fundamental working principles of Raman, SERS, and TERS as nondestructive, easy-to-perform, and fast tools for probing protein dynamics and aggregation. Finally, we highlight the utility of these techniques for the analysis of vibrational spectra of aggregation of proteins from various sources such as tissues, pathogens, food, biopharmaceuticals, and lastly, biological fouling to retrieve precise chemical information, which can be potentially translated to practical applications and point-of-care (PoC) devices. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Asunto(s)
Nanotecnología , Espectrometría Raman , Espectrometría Raman/métodos , Nanotecnología/métodos
18.
ACS Omega ; 9(26): 28937-28950, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973906

RESUMEN

We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect. The capability of directional magnetic field-assisted modulation of the surface electrical dipole of MENG provides a mechanism to create/break ionic bonds with DOX molecules, which facilitates efficient drug attachment and on-demand swift detachment of the drug at a targeted site. The magnetic field-assisted drug-loading mechanism was minutely analyzed using spectrophotometry and Raman spectroscopy. The detailed time-dependent analysis of controlled drug release by the MENG under unidirectional and rotating magnetic field excitation was conducted using field-emission scanning electron microscopy, energy-dispersive X-ray, and atomic force microscopic measurements. In vitro, experiments validate the cytocompatibility and magnetically assisted on-demand and swift DOX drug delivery by the MENG near MCF-7 breast cancer cells, which results in a significant enhancement of cancer cell killing efficiency. A state-of-the-art experiment was performed to visualize the nanoscale magnetoelectric effect of MENG using off-axis electron holography under Lorentz conditions.

19.
Mol Neurobiol ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823001

RESUMEN

MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.

20.
ACS Omega ; 9(11): 12403-12425, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524428

RESUMEN

Graphene's two-dimensional structural arrangement has sparked a revolutionary transformation in the domain of conductive transparent devices, presenting a unique opportunity in the renewable energy sector. This comprehensive Review critically evaluates the most recent advances in graphene production and its employment in solar cells, focusing on dye-sensitized, organic, and perovskite devices for bulk heterojunction (BHJ) designs. This comprehensive investigation discovered the following captivating results: graphene integration resulted in a notable 20.3% improvement in energy conversion rates in graphene-perovskite photovoltaic cells. In comparison, BHJ cells saw a laudable 10% boost. Notably, graphene's 2D internal architecture emerges as a protector for photovoltaic devices, guaranteeing long-term stability against various environmental challenges. It acts as a transportation facilitator and charge extractor to the electrodes in photovoltaic cells. Additionally, this Review investigates current research highlighting the role of graphene derivatives and their products in solar PV systems, illuminating the way forward. The study elaborates on the complexities, challenges, and promising prospects underlying the use of graphene, revealing its reflective implications for the future of solar photovoltaic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA