RESUMEN
Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.
Asunto(s)
COVID-19 , Sarampión , Poliomielitis , Rubéola (Sarampión Alemán) , Animales , Línea Celular , Chlorocebus aethiops , Contención de Riesgos Biológicos , Perros , Vigilancia en Salud Pública , SARS-CoV-2 , Células VeroRESUMEN
With poliovirus eradication nearing, few pockets of active wild poliovirus (WPV) transmission remain in the world. Intratypic differentiation (ITD) plays a crucial part in laboratory surveillance as the molecular detection method that can identify and distinguish wild and vaccine-like polioviruses isolated from acute flaccid paralysis cases or environmental sources. The need to detect new variants of WPV serotype 1 (WPV1) and the containment of all serotype 2 polioviruses (PV2) in 2015 required changes to the previous version of the method. The ITD version 5.0 is a set of six real-time reverse transcription-PCR (rRT-PCR) assays that serve as accurate diagnostic tools to easily detect and differentiate PV serotypes and genotypes. We describe the creation and properties of quantitation standards, including 16 control RNA transcripts and nine plaque-isolated viruses. All ITD rRT-PCR assays were validated using these standards, and the limits of detection were determined for each assay. We designed and pilot tested two new assays targeting recently circulating WPV1 genotypes and all PV2 viruses. The WPV1 assay had 99.1% specificity and 100% sensitivity, and the PV2 assay had 97.7% specificity and 92% sensitivity. Before proceeding to the next step in the global poliovirus eradication program, we needed to gain a better understanding of the performance of the ITD 5.0 suite of molecular assays and their limits of detection and specificities. The findings and conclusions in this evaluation serve as building blocks for future development work.
Asunto(s)
Erradicación de la Enfermedad/métodos , Tipificación Molecular/métodos , Poliomielitis/diagnóstico , Poliovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Monitoreo Epidemiológico , Genotipo , Humanos , Poliomielitis/prevención & control , Poliomielitis/virología , Poliovirus/genética , Vacuna Antipolio Oral/genética , ARN Viral/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , SerogrupoRESUMEN
We have identified circulation of 3 genogroups of enterovirus (EV) A71 in India. A new genogroup (proposed designation G) was discovered during this study. We isolated genogroups D and G in wide geographic areas but detected subgenogroup C1 only in 1 focus in western India. A systematic nationwide search for EV-A71 is warranted.
Asunto(s)
Enterovirus Humano A/genética , Enfermedad de Boca, Mano y Pie/virología , Adolescente , Adulto , Anciano , Proteínas de la Cápside/genética , Niño , Evolución Molecular , Femenino , Variación Genética , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Tipificación Molecular , Parálisis/epidemiología , Parálisis/virología , Filogenia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND & OBJECTIVES: The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. METHODS: Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. RESULTS: No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. INTERPRETATION & CONCLUSIONS: rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.
Asunto(s)
Proteínas de la Cápside/genética , Poliomielitis/virología , Poliovirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Heces/virología , Humanos , India , Poliomielitis/genética , Poliomielitis/inmunología , Poliovirus/genética , Vacuna Antipolio Oral/genética , Vacuna Antipolio Oral/aislamiento & purificación , Transcripción Reversa/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0255795.].
RESUMEN
INTRODUCTION: Following the withdrawal of Sabin type 2 from trivalent oral poliovirus vaccine (tOPV) in 2016, the introduction of ≥1 dose of inactivated poliovirus vaccine (IPV) in routine immunization was recommended, either as 1 full dose (0.5mL, intramuscular) or 2 fractional doses of IPV (fIPV-0.1mL, intradermal). India opted for fIPV. We conducted a comparative assessment of IPV and fIPV. METHODS: This was a 4-arm, open-label, multicenter, randomized controlled trial. Infants were enrolled and vaccines administered according to the study design, and the blood was drawn at age 6, 14, and 18 weeks for neutralization testing against all 3 poliovirus types. RESULTS: Study enrolled 799 infants. The seroconversion against type 2 poliovirus with 2 fIPV doses was 85.8% (95% confidence interval [CI]: 80.1%-90.0%) when administered at age 6 and 14 weeks, 77.0% (95% CI: 70.5-82.5) when given at age 10 and 14 weeks, compared to 67.9% (95% CI: 60.4-74.6) following 1 full-dose IPV at age 14 weeks. CONCLUSION: The study demonstrated the superiority of 2 fIPV doses over 1 full-dose IPV in India. Doses of fIPV given at 6 and 14 weeks were more immunogenic than those given at 10 and 14 weeks. Clinical Trial Registry of India (CTRI). Clinical trial registration number was CTRI/2017/02/007793.
Asunto(s)
Poliomielitis , Poliovirus , Anticuerpos Antivirales , Humanos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Lactante , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio OralRESUMEN
Surveillance and detection of polioviruses (PV) remain crucial to monitoring eradication progress. Intratypic differentiation (ITD) using the real-time RT-PCR kit is key to the surveillance workflow, where viruses are screened after cell culture isolation before a subset are verified by sequencing. The ITD kit is a series of real-time RT-PCR assays that screens cytopathic effect (CPE)-positive cell cultures using the standard WHO method for virus isolation. Because ITD screening is a critical procedure in the poliovirus identification workflow, validation of performance of real-time PCR platforms is a core requirement for the detection of poliovirus using the ITD kit. In addition, the continual update and improvement of the ITD assays to simplify interpretation in all platforms is necessary to ensure that all real-time machines are capable of detecting positive real-time signals. Four platforms (ABI7500 real-time systems, Bio-Rad CFX96, Stratagene MX3000P, and the Qiagen Rotor-Gene Q) were validated with the ITD kit and a redesigned poliovirus probe. The poliovirus probe in the real-time RT-PCR pan-poliovirus (PanPV) assay was re-designed with a double-quencher (Zen™) to reduce background fluorescence and potential false negatives. The updated PanPV probe was evaluated with a panel consisting of 184 polioviruses and non-polio enteroviruses. To further validate the updated PanPV probe, the new assay was pilot tested in five Global Polio Laboratory Network (GPLN) laboratories (Madagascar, India, Philippines, Pakistan, and Democratic Republic of Congo). The updated PanPV probe performance was shown to reduce background fluorescence and decrease the number of false positives compared to the standard PanPV probe.
Asunto(s)
Poliovirus , Reacción en Cadena en Tiempo Real de la Polimerasa , Heces , Laboratorios , Aguas del AlcantarilladoAsunto(s)
Reacciones Falso Negativas , Ensayos Analíticos de Alto Rendimiento/normas , Poliomielitis/diagnóstico , Vacuna Antipolio Oral/uso terapéutico , Poliovirus/genética , Erradicación de la Enfermedad/tendencias , Salud Global/estadística & datos numéricos , Salud Global/tendencias , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Poliomielitis/prevención & control , Poliovirus/patogenicidad , Vacuna Antipolio Oral/farmacología , Vacunación/efectos adversosRESUMEN
Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.