Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell Biochem ; 448(1-2): 91-105, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29427171

RESUMEN

This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.


Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/metabolismo , Distrofias de Conos y Bastones/enzimología , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Bastones/enzimología , Animales , Células COS , Anhidrasa Carbónica II/genética , Catálisis , Bovinos , Chlorocebus aethiops , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/patología , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Receptores de Superficie Celular/genética , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología
2.
J Biol Chem ; 290(17): 11052-60, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25767116

RESUMEN

By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.


Asunto(s)
Bicarbonatos/toxicidad , Señalización del Calcio/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Animales , Células COS , Catálisis , Bovinos , Chlorocebus aethiops , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Estructura Terciaria de Proteína
3.
Biochemistry ; 52(13): 2337-47, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23464624

RESUMEN

ANF-RGC is the prototype membrane guanylate cyclase, both the receptor and the signal transducer of the hormones ANF and BNP. After binding them at the extracellular domain, it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates production of the second messenger, cyclic GMP. This, in turn, controls the physiological processes of blood pressure, cardiovascular function, fluid secretion, and others: metabolic syndrome, obesity, and apoptosis. The biochemical mechanism by which this single molecule controls these diverse processes, explicitly blood pressure regulation, is the subject of this study. In line with the concept that the structural modules of ANF-RGC are designed to respond to more than one yet distinctive signals, the study demonstrates the construction of a novel ANF-RGC-In-gene-(669)WTAPELL(675) mouse model. Through this model, the study establishes that (669)WTAPELL(675) is a vital ANF signal transducer motif of the guanylate cyclase. Its striking physiological features linked with their biochemistry are the following. (1) It controls the hormonally dependent cyclic GMP production in the kidney and the adrenal gland. Its deletion causes (2) hypertension and (3) cardiac hypertrophy. (4) These mice show higher levels of the plasma aldosterone. For the first time, a mere seven-amino acid-encoded motif of the mouse gene has been directly linked with the physiological control of blood pressure regulation, a detailed biochemistry of this linkage has been established, and a model for this linkage has been described.


Asunto(s)
Presión Sanguínea , Receptores del Factor Natriurético Atrial/química , Receptores del Factor Natriurético Atrial/metabolismo , Aldosterona/sangre , Secuencias de Aminoácidos , Animales , Células COS , Calcio/metabolismo , Cardiomegalia/genética , Dominio Catalítico , Chlorocebus aethiops , Ratones , Receptores del Factor Natriurético Atrial/genética , Eliminación de Secuencia , Transducción de Señal
4.
Biochemistry ; 51(46): 9394-405, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23088492

RESUMEN

ANF-RGC is the prototype receptor membrane guanylate cyclase that is both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single-transmembrane protein. After binding these hormones at the extracellular domain, ANF-RGC at its intracellular domain signals the activation of the C-terminal catalytic module and accelerates the production of the second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. At present, this is the sole transduction mechanism and the physiological function of ANF-RGC. Through comprehensive studies involving biochemistry, immunohistochemistry, and blood pressure measurements in mice with targeted gene deletions, this study demonstrates a new signaling model of ANF-RGC that also controls blood pressure. In this model, (1) ANF-RGC is not the transducer of ANF and BNP, (2) its extracellular domain is not used for signaling, and (3) the signal flow is not downstream from the extracellular domain to the core catalytic domain. Instead, the signal is the intracellular Ca(2+), which is translated at the site of its reception, at the core catalytic domain of ANF-RGC. A model for this Ca(2+) signal transduction is diagrammed. It captures Ca(2+) through its Ca(2+) sensor myristoylated neurocalcin δ and upregulates ANF-RGC activity with a K(1/2) of 0.5 µM. The neurocalcin δ-modulated domain resides in the (849)DIVGFTALSAESTPMQVV(866) segment of ANF-RGC, which is a part of the core catalytic domain. Thereby, ANF-RGC is primed to receive, transmit, and translate the Ca(2+) signals into the generation of cyclic GMP at a rapid rate. The study defines a new paradigm of membrane guanylate cyclase signaling, which is linked to the physiology of cardiac vasculature regulation and possibly also to fluid secretion.


Asunto(s)
Presión Sanguínea , Calcio/metabolismo , Guanilato Ciclasa/metabolismo , Transducción de Señal , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Inmunohistoquímica
5.
Biochemistry ; 51(23): 4650-7, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22642846

RESUMEN

Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ∼1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing [Ca(2+)](i) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing [Ca(2+)](i) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction.


Asunto(s)
Membrana Celular/enzimología , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Guanilato Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Proteínas Recombinantes , Transducción de Señal
6.
Cell Physiol Biochem ; 29(3-4): 417-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22508049

RESUMEN

Rod outer segment membrane guanylate cyclase (ROS-GC1) is a bimodal Ca(2+) signal transduction switch. Lowering [Ca(2+)](i) from 200 to 20 nM progressively turns it "ON" as does raising [Ca(2+)](i) from 500 to 5000 nM. The mode operating at lower [Ca(2+)](i) plays a vital role in phototransduction in both rods and cones. The physiological function of the mode operating at elevated [Ca(2+)](i) is not known. Through comprehensive studies on mice involving gene deletions, biochemistry, immunohistochemistry, electroretinograms and single cell recordings, the present study demonstrates that the Ca(2+)-sensor S100B coexists with and is physiologically linked to ROS-GC1 in cones but not in rods. It up-regulates ROS-GC1 activity with a K(1/2) for Ca(2+) greater than 500 nM and modulates the transmission of neural signals to cone ON-bipolar cells. Furthermore, a possibility is raised that under pathological conditions where [Ca(2+)](i) levels rise to and perhaps even enter the micromolar range, the S100B signaling switch will be turned "ON" causing an explosive production of CNG channel opening and further rise in [Ca(2+)](i) in cone outer segments. The findings define a new cone-specific Ca(2+)-dependent feature of photoreceptors and expand our understanding of the operational principles of phototransduction machinery.


Asunto(s)
Calcio/metabolismo , Guanilato Ciclasa/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/enzimología , Segmento Externo de la Célula en Bastón/enzimología , Proteínas S100/metabolismo , Animales , GMP Cíclico/genética , GMP Cíclico/metabolismo , Activación Enzimática , Guanilato Ciclasa/genética , Inmunohistoquímica , Fototransducción , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Receptores de Superficie Celular/genética , Células Bipolares de la Retina/enzimología , Células Bipolares de la Retina/metabolismo , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/genética , Membranas Sinápticas/enzimología , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiología
7.
Front Mol Neurosci ; 15: 929396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017080

RESUMEN

The membrane guanylate cyclase (MGC) cellular signaling pathway consists of seven signaling pathways and is critical for the survival of prokaryotes eukaryotes, and highly complex vertebrate organisms. A sequel to the author's earlier comprehensive reviews, covering the field of MGC from its origin to its establishment to the year 2014, this article exclusively deals with the history of its development from the year 1963 to 1987. It narrates the efforts involved in building on small projects, brick by brick, and its emergence from the chasm of disbelief, through steady, continuous work. To make the presentation simple and chronologically continuous, the subject matters of the earlier reviews and publication of these authors have been freely borrowed with appropriate citations.

8.
Front Mol Neurosci ; 15: 1022771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683846

RESUMEN

One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.

9.
Biochemistry ; 50(7): 1213-25, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21222471

RESUMEN

ANF-RGC is the prototype receptor membrane guanylate cyclase being both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single transmembrane-spanning protein. After binding these hormones at the extracellular domain it at its intracellular domain signals activation of the C-terminal catalytic module and accelerates the production of its second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. ATP is obligatory for the posttransmembrane dynamic events leading to ANF-RGC activation. It functions through the ATP-regulated module, ARM (KHD) domain, of ANF-RGC. In the current over a decade held model "phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A" [Potter, L. R., and Hunter, T. (1998) Mol. Cell. Biol. 18, 2164-2172]. The presented study challenges this concept. It demonstrates that, instead, ATP allosteric modification of ARM is the primary signaling step of ANF-GC activation. In this two-step new dynamic model, ATP in the first step binds ARM. This triggers in it a chain of transduction events, which cause its allosteric modification. The modification partially activates (about 50%) ANF-RGC and, concomitantly, also prepares the ARM for the second successive step. In this second step, ARM is phosphorylated and ANF-RGC achieves additional (∼50%) full catalytic activation. The study defines a new paradigm of the ANF-RGC signaling mechanism.


Asunto(s)
Adenosina Trifosfato/farmacología , Regulación Alostérica/fisiología , Receptores del Factor Natriurético Atrial/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Catálisis , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación/fisiología , Receptores del Factor Natriurético Atrial/química , Estudios de Validación como Asunto
10.
Biochem Biophys Res Commun ; 408(2): 236-41, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21463603

RESUMEN

This study documents the identity of an intriguing transduction mechanism of the [Ca(2+)](i) signals by the photoreceptor ROS-GC1. Despite their distal residences and operational modes in phototransduction, the two GCAPs transmit and activate ROS-GC1 through a common Ca(2+) transmitter switch (Ca(2+)TS). A combination of immunoprecipitation, fluorescent spectroscopy, mutational analyses and reconstitution studies has been used to demonstrate that the structure of this switch is (657)WTAPELL(663). The two Ca(2+) signaling GCAP pathways converge in Ca(2+)TS, get transduced, activate ROS-GC1, generate the LIGHT signal second messenger cyclic GMP and yet functionally perform divergent operations of the phototransduction machinery. The findings define a new Ca(2+)-modulated photoreceptor ROS-GC transduction model; it is depicted and discussed for its application to processing the different shades of LIGHT.


Asunto(s)
Guanilato Ciclasa/metabolismo , Fototransducción , Receptores de Superficie Celular/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Eliminación de Secuencia
11.
Biochemistry ; 49(34): 7303-13, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20684533

RESUMEN

In a small subset of the olfactory sensory neurons, the odorant receptor ONE-GC guanylate cyclase is a central transduction component of the cyclic GMP signaling pathway. In a two-step transduction model, the odorant, uroguanylin, binds to the extracellular domain and activates its intracellular domain to generate the odorant second messenger, cyclic GMP. This study via comprehensive technology, including gene deletion, live cell Forster resonance energy transfer (FRET), and surface plasmon resonance (SPR) spectroscopy, documents the identity of a remarkably intriguing operation of a Ca(2+) sensor component of the ONE-GC transduction machinery, GCAP1. In the ciliary membranes, the sites of odorant transduction, GCAP1 is biochemically and physiologically coupled to ONE-GC. Strikingly, this coupling reverses its well- established function in ROS-GC1 signaling, linked with phototransduction. In response to the free Ca(2+) range from nanomolar to semimicromolar, it inhibits ROS-GC1, yet in this range, it incrementally stimulates ONE-GC. These two opposite modes of signaling two SENSORY processes by a single Ca(2+) sensor define a new transduction paradigm of membrane guanylate cyclases. This paradigm is pictorially presented.


Asunto(s)
Calcio/metabolismo , Odorantes , Transducción de Señal , Animales , GMP Cíclico/metabolismo , Elementos Químicos , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/fisiología , Fototransducción , Péptidos Natriuréticos , Sistemas de Mensajero Secundario , Células Receptoras Sensoriales
12.
Biochem Biophys Res Commun ; 391(3): 1379-84, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20026308

RESUMEN

In a subset of the olfactory sensory neurons ONE-GC($) membrane guanylate cyclase is a central component of two odorant-dependent cyclic GMP signaling pathways. These odorants are uroguanylin and CO(2). The present study was designed to decipher the biochemical and molecular differences between these two odorant signaling mechanisms. The study shows (1) in contrast to uroguanylin, CO(2) transduction mechanism is Ca(2+)-independent. (2) CO(2) transduction site, like that of uroguanylin-neurocalcin delta, resides in the core catalytic domain, aa 880-1028, of ONE-GC. (3) The site, however, does not overlap the signature neurocalcin delta signal transduction domain, (908)LSEPIE(913). Finally, (4) this study negates the prevailing concept that CO(2) uniquely signals ONE-GC activity (Sun et al. [19]; Guo et al. [21]). It demonstrates that it also signals the activation of photoreceptor membrane guanylate cyclase ROS-GC1. These results show an additional new transduction mechanism of the membrane guanylate cyclases and broaden our understanding of the molecular mechanisms by which different odorants using a single guanylate cyclase can regulate diverse cyclic GMP signaling pathways.


Asunto(s)
Dióxido de Carbono/metabolismo , Guanilato Ciclasa/metabolismo , Péptidos Natriuréticos/metabolismo , Odorantes , Neuronas Receptoras Olfatorias/enzimología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Bicarbonatos/farmacología , Células COS , Dominio Catalítico/genética , Membrana Celular/enzimología , Chlorocebus aethiops , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Neuronas Receptoras Olfatorias/efectos de los fármacos , Receptores de Superficie Celular/genética
13.
Mol Cell Biochem ; 334(1-2): 3-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19957201

RESUMEN

This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.


Asunto(s)
Guanilato Ciclasa/fisiología , Transducción de Señal , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Guanilato Ciclasa/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteínas de la Membrana , Sistemas de Mensajero Secundario
14.
Mol Cell Biochem ; 334(1-2): 181-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937091

RESUMEN

This review focuses on the principles of the Ca(2+)-modulated ROS-GC subfamily transduction system linked with the mammalian olfactory transduction field, its historical development, and the present day status on its constitution and operational mechanisms controlling the process of olfactory-transduction. Beginning parts of this article are freely borrowed from the earlier reviews of the authors (Sharma RK, Duda T, Venkataraman V, Koch KW, Curr Topics Biochem Res 6:111-144, 2004; Duda T, Venkataraman V, Sharma RK, Neuronal calcium sensor proteins, pp 91-113, Nova Science Publishers, Inc., 2007).


Asunto(s)
Guanilato Ciclasa/fisiología , Vías Olfatorias , Transducción de Señal , Animales , Humanos , Odorantes , Segmento Externo de la Célula en Bastón/enzimología
15.
Mol Cell Biochem ; 334(1-2): 199-206, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19953306

RESUMEN

In the continuous efforts to test the validity of the theme that the Ca(2+)-modulated ROS-GC subfamily system is a universal transduction component of the sensory and sensory-linked network of neurons, this article focuses on the presence and variant biochemical forms of this transduction system in the gustatory epithelium, the site of gustatory transduction; in the pineal, a light-sensitive gland; and in the hippocampus neurons, linked with the perception of all SENSES.


Asunto(s)
Guanilato Ciclasa/fisiología , Segmento Externo de la Célula en Bastón/enzimología , Células Receptoras Sensoriales/enzimología , Transducción de Señal , Hipocampo/citología , Hipocampo/metabolismo , Glándula Pineal/citología , Glándula Pineal/metabolismo , Gusto
16.
Mol Cell Biochem ; 334(1-2): 105-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19943184

RESUMEN

Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca(2+). The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca(2+)-concentration via small Ca(2+)-binding proteins. Based on the site of their expression and their Ca(2+) modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111-144, 2004).


Asunto(s)
Guanilato Ciclasa/fisiología , Fototransducción , Animales , Señalización del Calcio , Humanos , Neuronas Retinianas/enzimología , Segmento Externo de la Célula en Bastón/enzimología , Visión Ocular
17.
Mol Cell Biochem ; 325(1-2): 1-14, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19165577

RESUMEN

Hippocalcin is a member of the neuronal Ca(2+) sensor protein family. Among its many biochemical functions, its established physiological function is that via neuronal apoptosis inhibitory protein it protects the neurons from Ca(2+)-induced cell death. The precise biochemical mechanism/s, through which hippocalcin functions, is not clear. In the present study, a new mechanism by which it functions is defined. The bovine form of hippocalcin (BovHpca) native to the hippocampus has been purified, sequenced, cloned, and studied. The findings show that there is the evolutionary conservation of its structure. It is a Ca(2+)-sensor of a variant form of the ROS-GC subfamily of membrane guanylate cyclases, ONE-GC. It senses physiological increments of Ca(2+) with a K(1/2) of 0.5 microM and stimulates ONE-GC or ONE-GC-like membrane guanylate cyclase. The Hpca-modulated ONE-GC-like transduction system exists in the hippocampal neurons. And hippocalcin-modulated ONE-GC transduction system exists in the olfactory receptor neuroepithelium. The Hpca-gene knock out studies demonstrate that the portion of this is about 30% of the total membrane guanylate cyclase transduction system. The findings establish Hpca as a new Ca(2+) sensor modulator of the ROS-GC membrane guanylate cyclase transduction subfamily. They support the concept on universality of the presence and operation of the ROS-GC transduction system in the sensory and sensory-linked neurons. They validate that the ROS-GC transduction system exists in multiple forms. And they provide an additional mechanism by which ROS-GC subfamily acts as a transducer of the Ca(2+) signals originating in the neurons.


Asunto(s)
Guanilato Ciclasa/metabolismo , Hipocalcina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía en Gel , Clonación Molecular , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Hipocalcina/química , Hipocalcina/genética , Hipocalcina/aislamiento & purificación , Hipocampo/enzimología , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
18.
Mol Cell Biochem ; 324(1-2): 39-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19137266

RESUMEN

ANF-RGC membrane guanylate cyclase is the receptor for the hypotensive peptide hormones, atrial natriuretic factor (ANF) and type B natriuretic peptide (BNP). It is a single transmembrane spanning protein. Binding the hormone to the extracellular domain activates its intracellular catalytic domain. This results in accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature, and fluid secretion. ATP is the obligatory transducer of the ANF signal. It works through its ATP regulated module, ARM, which is juxtaposed to the C-terminal side of the transmembrane domain. Upon interaction, ATP induces a cascade of temporal and spatial changes in the ARM, which, finally, result in activation of the catalytic module. Although the exact nature and the details of these changes are not known, some of these have been stereographed in the simulated three-dimensional model of the ARM and validated biochemically. Through comprehensive techniques of steady state, time-resolved tryptophan fluorescence and Forster Resonance Energy Transfer (FRET), site-directed and deletion-mutagenesis, and reconstitution, the present study validates and explains the mechanism of the model-based predicted transduction role of the ARM's structural motif, (669)WTAPELL(675). This motif is critical in the ATP-dependent ANF signaling. Molecular modeling shows that ATP binding exposes the (669)WTAPELL(675) motif, the exposure, in turn, facilitates its interaction and activation of the catalytic module. These principles of the model have been experimentally validated. This knowledge brings us a step closer to our understanding of the mechanism by which the ATP-dependent spatial changes within the ARM cause ANF signaling of ANF-RGC.


Asunto(s)
Adenosina Trifosfato/metabolismo , Guanilato Ciclasa/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal , Adenosina Trifosfato/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Péptidos Natriuréticos/metabolismo , Conformación Proteica
19.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783616

RESUMEN

The membrane guanylate cyclase, ROS-GC, that synthesizes cyclic GMP for use as a second messenger for visual transduction in retinal rods and cones, is stimulated by bicarbonate. Bicarbonate acts directly on ROS-GC1, because it enhanced the enzymatic activity of a purified, recombinant fragment of bovine ROS-GC1 consisting solely of the core catalytic domain. Moreover, recombinant ROS-GC1 proved to be a true sensor of bicarbonate, rather than a sensor for CO2. Access to bicarbonate differed in rods and cones of larval salamander, Ambystoma tigrinum, of unknown sex. In rods, bicarbonate entered at the synapse and diffused to the outer segment, where it was removed by Cl--dependent exchange. In contrast, cones generated bicarbonate internally from endogenous CO2 or from exogenous CO2 that was present in extracellular solutions of bicarbonate. Bicarbonate production from both sources of CO2 was blocked by the carbonic anhydrase inhibitor, acetazolamide. Carbonic anhydrase II expression was verified immunohistochemically in cones but not in rods. In addition, cones acquired bicarbonate at their outer segments as well as at their inner segments. The multiple pathways for access in cones may support greater uptake of bicarbonate than in rods and buffer changes in its intracellular concentration.


Asunto(s)
Bicarbonatos/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Visión Ocular/fisiología , Acetazolamida/farmacología , Ambystoma , Animales , Células COS , Dióxido de Carbono/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , GMP Cíclico/metabolismo , Expresión Génica , Guanilato Ciclasa/genética , Ratones , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Visión Ocular/efectos de los fármacos
20.
Biochemistry ; 47(25): 6590-601, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18500817

RESUMEN

ROS-GC1 membrane guanylate cyclase is a Ca(2+) bimodal signal transduction switch. It is turned "off" by a rise in free Ca(2+) from nanomolar to the semicromolar range in the photoreceptor outer segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons it is turned "on". These opposite operational modes of the switch are specified by its Ca(2+) sensing devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin delta is a CD-GCAP. In the present study, the neurocalcin delta-modulated site, V(837)-L(858), in ROS-GC1 has been mapped. The location and properties of this site are unique. It resides within the core domain of the catalytic module and does not require the alpha-helical dimerization domain structural element (amino acids 767-811) for activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically active; it is directly regulated by the neurocalcin delta-modulated Ca(2+) signal and is dimeric in nature. A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin delta docking simulations were carried out to define the three-dimensional features of the interacting domains of the two molecules. These findings define a new transduction model for the Ca(2+) signaling of ROS-GC1.


Asunto(s)
Señalización del Calcio , Guanilato Ciclasa/metabolismo , Neurocalcina/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Calcio/metabolismo , Dominio Catalítico , Chlorocebus aethiops , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Neurocalcina/química , Neurocalcina/genética , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Resonancia por Plasmón de Superficie , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA