Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 60(11): 5907-5912, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33348450

RESUMEN

A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.


Asunto(s)
Compuestos Férricos/metabolismo , Hemo/metabolismo , Peróxidos/metabolismo , Superóxidos/metabolismo , Termodinámica , Compuestos Férricos/química , Hemo/química , Hidrógeno/química , Hidrógeno/metabolismo , Estructura Molecular , Oxidación-Reducción , Peróxidos/química , Espectrofotometría Ultravioleta , Superóxidos/química
2.
J Am Chem Soc ; 142(6): 3104-3116, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31913628

RESUMEN

Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.


Asunto(s)
Compuestos Férricos/química , Óxido Ferrosoférrico/química , Hemo/química , Peróxido de Hidrógeno/química , Superóxidos/química , Termodinámica , Complejos de Coordinación/química
3.
Bioorg Med Chem Lett ; 30(23): 127539, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32919013

RESUMEN

Nucleotide prodrugs are of great clinical interest for treating a variety of viral infections due to their ability to target tissues selectively and to deliver relatively high concentrations of the active nucleotide metabolite intracellularly. However, their clinical successes have been limited, oftentimes due to unwanted in vivo metabolic processes that reduce the quantities of nucleoside triphosphate that reach the site of action. In an attempt to circumvent this, we designed novel nucleosides that incorporate a sterically bulky group at the 5'-carbon of the phosphoester prodrug, which we reasoned would reduce the amounts of non-productive PO bond cleavage back to the corresponding nucleoside by nucleotidases. Molecular docking studies with the NS5B HCV polymerase suggested that a nucleotide containing a 5'-methyl group could be accommodated. Therefore, we synthesized mono- and diphosphate prodrugs of 2',5'-C-dimethyluridine stereoselectively and evaluated their cytotoxicity and anti-HCV activity in the HCV replicon assay. All four prodrugs exhibited anti-HCV activity with IC50 values in the single digit micromolar concentrations, with the 5'(R)-C-methyl prodrug displaying superior potency relative to its 5'(S)-C-methyl counterpart. However, when compared to the unmethylated prodrug, the potency is poorer. The poorer potency of these prodrugs may be due to unfavorable steric interactions of the 5'-C-methyl group in the active sites of the kinases that catalyze the formation of active triphosphate metabolite.


Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Profármacos/farmacología , Nucleótidos de Uracilo/farmacología , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Profármacos/síntesis química , Profármacos/metabolismo , Unión Proteica , Nucleótidos de Uracilo/síntesis química , Nucleótidos de Uracilo/metabolismo , Proteínas no Estructurales Virales/metabolismo
4.
Inorg Chem ; 58(22): 15423-15432, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31657921

RESUMEN

The focus of this study is in the description of synthetic heme/copper/O2 chemistry employing a heme-containing binucleating ligand which provides a tridentate chelate for copper ion binding. The addition of O2 (-80 °C, tetrahydrofuran (THF) solvent) to the reduced heme compound (PImH)FeII (1), gives the oxy-heme adduct, formally a heme-superoxide complex FeIII-(O2•-) (2) (resonance Raman spectroscopy (rR): νO-O, 1171 cm-1 (Δ18O2, -61 cm-1); νFe-O, 575 cm-1 (Δ18O2, -24 cm-1)). Simple warming of 2 to room temperature regenerates reduced complex 1; this reaction is reversible, as followed by UV-vis spectroscopy. Complex 2 is electron paramagnetic resonance (EPR)-silent and exhibits upfield-shifted pyrrole resonances (δ 9.12 ppm) in 2H NMR spectroscopy, indicative of a six-coordinate low-spin heme. The coordination of the tethered imidazolyl arm to the heme-superoxide complex as an axial base ligand is suggested. We also report the new fully reduced heme-copper complex [(PImH)FeIICuI]+ (3), where the copper ion is bound to the tethered tridentate portion of PImH. This reacts with O2 to give a distinctive low-temperature-stable, high-spin (S = 2, overall) peroxo-bridged complex [(PImH)FeIII-(O22-)-CuII]+ (3a): λmax, 420 (Soret), 545, 565 nm; δpyrr, 93 ppm; νO-O, 799 cm-1 (Δ18O2, -48 cm-1); νFe-O, 524 cm-1 (Δ18O2, -23 cm-1). To 3a, the addition of dicyclohexylimidazole (DCHIm), which serves as a heme axial base, leads to low-spin (S = 0 overall) species complex [(DCHIm)(PImH)FeIII-(O22-)-CuII]+ (3b): λmax, 425 (Soret), 538 nm; δpyrr, 10.2 ppm; νO-O, 817 cm-1 (Δ18O2, -55 cm-1); νFe-O, 610 cm-1 (Δ18O2, -26 cm-1). These investigations into the characterization of the O2-adducts from (PImH)FeII (1) with/without additional copper chelation advance our understanding of the dioxygen reactivity of heme-only and heme/Cu-ligand heterobinuclear system, thus potentially relevant to O2 reduction in heme-copper oxidases or fuel-cell chemistry.

5.
J Am Chem Soc ; 139(48): 17421-17430, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29091732

RESUMEN

Peroxynitrite (-OON═O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O2•-) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-FeIII complex [(PIm)FeIII(-OON═O)] (3) (PIm; a porphyrin moiety with a covalently tethered imidazole axial "base" donor ligand) has been identified and characterized by various spectroscopies (UV-vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at -80 °C by addition of ·NO(g) to the heme-superoxo species, [(PIm)FeIII(O2•-)] (2). DFT calculations confirm that 3 is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex 3 thermally transforms to its isomeric low-spin nitrato form [(PIm)FeIII(NO3-)] (4a). While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di-tert-butylphenol (2,4DTBP) to complex 3 does not lead to nitrated phenol; the nitrate complex 4a still forms. DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O-O cleavage, giving nitrogen dioxide (·NO2) plus a ferryl compound [(PIm)FeIV═O] (7); this rebounds to give [(PIm)FeIII(NO3-)] (4a).The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.


Asunto(s)
Compuestos Férricos/química , Óxido Nítrico/química , Ácido Peroxinitroso/química , Superóxidos/química , Hemo/química , Hemoglobinas/metabolismo , Oxigenasas/metabolismo , Teoría Cuántica
6.
J Am Chem Soc ; 139(1): 472-481, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28029788

RESUMEN

The 4H+/4e- reduction of O2 to water, a key fuel-cell reaction also carried out in biology by oxidase enzymes, includes the critical O-O bond reductive cleavage step. Mechanistic investigations on active-site model compounds, which are synthesized by rational design to incorporate systematic variations, can focus on and resolve answers to fundamental questions, including protonation and/or H-bonding aspects, which accompany electron transfer. Here, we describe the nature and comparative reactivity of two low-spin heme-peroxo-Cu complexes, LS-4DCHIm, [(DCHIm)F8FeIII-(O22-)-CuII(DCHIm)4]+, and LS-3DCHIm, [(DCHIm)F8FeIII-(O22-)-CuII(DCHIm)3]+ (F8 = tetrakis(2,6-difluorophenyl)-porphyrinate; DCHIm = 1,5-dicyclohexylimidazole), toward different proton (4-nitrophenol and [DMF·H+](CF3SO3-)) (DMF = dimethyl-formamide) or electron (decamethylferrocene (Fc*)) sources. Spectroscopic reactivity studies show that differences in structure and electronic properties of LS-3DCHIm and LS-4DCHIm lead to significant differences in behavior. LS-3DCHIm is resistant to reduction, is unreactive toward weakly acidic 4-NO2-phenol, and stronger acids cleave the metal-O bonds, releasing H2O2. By contrast, LS-4DCHIm forms an adduct with 4-NO2-phenol, which includes an H-bond to the peroxo O-atom distal to Fe (resonance Raman (rR) spectroscopy and DFT). With addition of Fc* (2 equiv overall required), O-O reductive cleavage occurs, giving water, Fe(III), and Cu(II) products; however, a kinetic study reveals a one-electron rate-determining process, ket = 1.6 M-1 s-1 (-90 °C). The intermediacy of a high-valent [(DCHIm)F8FeIV═O] species is thus implied, and separate experiments show that one-electron reduction-protonation of [(DCHIm)F8FeIV═O] occurs faster (ket2 = 5.0 M-1 s-1), consistent with the overall postulated mechanism. The importance of the H-bonding interaction as a prerequisite for reductive cleavage is highlighted.


Asunto(s)
Cobre/química , Compuestos Férricos/química , Hemo/química , Compuestos Organometálicos/química , Oxígeno/química , Protones , Peróxido de Hidrógeno/análisis , Cinética , Oxidación-Reducción , Teoría Cuántica
7.
J Am Chem Soc ; 138(6): 1796-9, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26799113

RESUMEN

Bimetallic (Et4N)2[Co2(L)2], (Et4N)2[1] (where (L)(3-) = (N(o-PhNC(O)(i)Pr)2)(3-)) reacts with 2 equiv of O2 to form the monometallic species (Et4N)[Co(L)O2], (Et4N)[3]. A crystallographically characterized analog (Et4N)2[Co(L)CN], (Et4N)2[2], gives insight into the structure of [3](1-). Magnetic measurements indicate [2](2-) to be an unusual high-spin Co(II)-cyano species (S = 3/2), while IR, EXAFS, and EPR spectroscopies indicate [3](1-) to be an end-on superoxide complex with an S = 1/2 ground state. By X-ray spectroscopy and calculations, [3](1-) features a high-spin Co(II) center; the net S = 1/2 spin state arises after the Co electrons couple to both the O2(•-) and the aminyl radical on redox non-innocent (L(•))(2-). Dianion [1](2-) shows both nucleophilic and electrophilic catalytic reactivity upon activation of O2 due to the presence of both a high-energy, filled O2(-) π* orbital and an empty low-lying O2(-) π* orbital in [3](1-).


Asunto(s)
Cobalto/química , Oxígeno/química , Superóxidos/química , Catálisis , Ligandos , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
8.
J Biol Inorg Chem ; 21(5-6): 729-43, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27350154

RESUMEN

A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.


Asunto(s)
Cianuros/química , Compuestos Ferrosos/química , Compuestos Ferrosos/síntesis química , Hemo/química , Óxidos de Nitrógeno/química , Ligandos , Estructura Molecular
9.
J Am Chem Soc ; 137(3): 1032-5, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25594533

RESUMEN

Here we describe a new approach for the generation of heme-peroxo-Cu compounds, using a "naked" complex synthon, [(F8)Fe(III)-(O2(2-))-Cu(II)(MeTHF)3](+) (MeTHF = 2-methyltetrahydrofuran; F8 = tetrakis(2,6-difluorophenyl)porphyrinate). Addition of varying ligands (L) for Cu allows the generation and spectroscopic characterization of a family of high- and low-spin Fe(III)-(O2(2-))-Cu(II)(L) complexes. These possess markedly varying Cu(II) coordination geometries, leading to tunable Fe-O, O-O, and Cu-O bond strengths. DFT calculations accompanied by vibrational data correlations give detailed structural insights.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Compuestos Ferrosos/química , Hemo/química , Oxígeno/química , Estructura Molecular , Teoría Cuántica
10.
J Am Chem Soc ; 135(44): 16248-51, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24147457

RESUMEN

The selective oxidation of the α-position of two heme-Fe(III) tetraarylporphryinate complexes occurs when water(hydroxide) attacks their oxidized Cmpd I-type equivalents, high-valent Fe(IV)═O π-cation radical species ((P(+•))Fe(IV)═O). Stepwise intermediate formation occurs, as detected by UV-vis spectroscopic monitoring or mass spectrometric interrogation, being iron(III) isoporphyrins, iron(III) benzoyl-biliverdins, and the final verdoheme-like products. Heme oxygenase (HO) enzymes could proceed through heterolytic cleavage of an iron(III)-hydroperoxo intermediate to form a transient Cmpd I-type species.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/análogos & derivados , Hierro/metabolismo , Metaloporfirinas/metabolismo , Cationes/química , Cationes/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Hemo/química , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/química , Hierro/química , Metaloporfirinas/química , Estructura Molecular
11.
Polyhedron ; 582013 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24223452

RESUMEN

Inspired by the chemistry relevant to dioxygen storage, transport and activation by metalloproteins, in particular for heme/copper oxidases, and carbon monoxide binding to metal-containing active sites as a probe or surrogate for dioxygen binding, a series of heme derived dioxygen and CO complexes have been designed, synthesized, and characterized with respect to their physical properties and reactivity. The focus of this study is in the description and comparison of three types heme-superoxo and heme-CO adducts. The starting point is in the characterization of the reduced heme complexes, [(F8)FeII], [(PPy)FeII] and [(PIm)FeII], where F8, PPy and PIm are iron(II)-porphyrinates and where PPy and PIm possess a covalently tethered axial base pyridyl or imidazolyl group, respectively. The spin-state properties of these complexes vary with solvent. The low temperature reaction between O2 and these reduced porphyrin FeII complex yield distinctive low spin heme-superoxo adducts. The dioxygen binding properties for all three complexes are shown to be reversible, via alternate argon or O2 bubbling. Carbon monoxide binds to the reduced heme-FeII precursors to form low spin heme-CO adducts. The implications for future investigations of these heme O2 and CO adducts are discussed.

12.
J Med Chem ; 66(8): 5397-5414, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37026870

RESUMEN

The C-20 oxime of progesterone, EIDD-036 (2), demonstrates neuroprotection and improved outcomes in animal models of traumatic brain injury (TBI). However, 2 suffers from poor solubility, which renders it unsuitable for rapid administration. Previous prodrugs of 2 aimed at improving solubility by incorporating enzymatically labile amino acid and phosphate ester promoieties. These approaches were effective but led to limitations with in vivo administration. Herein, we disclose a pH-responsive water-soluble prodrug strategy to improve exposure to 2 through enzyme-independent activation. Compound 13l was identified as a lead that exhibits water-solubility, stability in acidic solutions, and rapid conversion to 2 at physiological pH. Administration of 13l to rats resulted in a twofold increase in exposure to 2 compared to the previous generation phosphate prodrug, EIDD-1723 (6). In a rat model of TBI, treatment with 13l resulted in a significant decrease in cerebral edema when administered postinjury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Profármacos , Ratas , Animales , Profármacos/química , Agua/química , Solubilidad , Fosfatos/uso terapéutico , Concentración de Iones de Hidrógeno , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
13.
ACS Pharmacol Transl Sci ; 6(5): 702-709, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37200809

RESUMEN

5-Fluorouracil and 5-fluorouracil-based prodrugs have been used clinically for decades to treat cancer. Their anticancer effects are most prominently ascribed to inhibition of thymidylate synthase (TS) by metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). However, 5-fluorouracil and FdUMP are subject to numerous unfavorable metabolic events that can drive undesired systemic toxicity. Our previous research on antiviral nucleotides suggested that substitution at the nucleoside 5'-carbon imposes conformational restrictions on the corresponding nucleoside monophosphates, rendering them poor substrates for productive intracellular conversion to viral polymerase-inhibiting triphosphate metabolites. Accordingly, we hypothesized that 5'-substituted analogs of FdUMP, which is uniquely active at the monophosphate stage, would inhibit TS while preventing undesirable metabolism. Free energy perturbation-derived relative binding energy calculations suggested that 5'(R)-CH3 and 5'(S)-CF3 FdUMP analogs would maintain TS potency. Herein, we report our computational design strategy, synthesis of 5'-substituted FdUMP analogs, and pharmacological assessment of TS inhibitory activity.

14.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37566734

RESUMEN

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Transmisión Sináptica , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Transmisión Sináptica/fisiología , Ácido Glutámico/farmacología , Encéfalo/metabolismo
15.
Front Pharmacol ; 13: 1083284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686712

RESUMEN

Nucleoside- and nucleotide-based therapeutics are indispensable treatment options for patients suffering from malignant and viral diseases. These agents are most commonly administered to patients as prodrugs to maximize bioavailability and efficacy. While the literature provides a practical prodrug playbook to facilitate the delivery of nucleoside and nucleotide therapeutics, small context-dependent amendments to these popular prodrug strategies can drive dramatic improvements in pharmacokinetic (PK) profiles. Herein we offer a brief overview of current prodrug strategies, as well as a case study involving the fine-tuning of lipid prodrugs of acyclic nucleoside phosphonate tenofovir (TFV), an approved nucleotide HIV reverse transcriptase inhibitor (NtRTI) and the cornerstone of combination antiretroviral therapy (cART). Installation of novel lipid terminal motifs significantly reduced fatty acid hepatic ω-oxidation while maintaining potent antiviral activity. This work contributes important insights to the expanding repertoire of lipid prodrug strategies in general, but particularly for the delivery and distribution of acyclic nucleoside phosphonates.

16.
Turk J Chem ; 45(6): 1933-1951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38144579

RESUMEN

The molecular structure of bis(2-isobutyrylamidophenyl)amine (H3LNNN) has been determined from single-crystal X-ray diffraction data. The crystal packing of H3LNNN is governed by the N-H···O and C-H···O hydrogen-bonding and C-H···π stacking interactions between the vicinal molecules. The intermolecular interactions in the crystal structure of H3LNNN have been also examined via Hirshfeld surface analysis and fingerprint plots. The Hirshfeld surface analysis showed that the important role of N-H···O and C-H···π interactions in the solid-state structure of H3LNNN. The molecular structure, vibrational frequencies, and infrared intensities of H3LNNN were computed by ab initio HF and DFT (B3LYP, B3PW91, and BLYP) methods using the 6-31G(d,p) basis set. The computed theoretical geometric parameters were compared with the corresponding single crystal structure of H3LNNN. The harmonic vibrations calculated for the title compound by the B3LYP method are in good agreement with the experimental IR spectral data. The theoretical vibrational spectrum of the H3LNNN compound was interpreted through potential energy distributions using the SQM Version 2.0 program. The performance of the used methods and the scaling factor values were calculated with PAVF Version 1.0 program.

17.
J Med Chem ; 64(17): 12917-12937, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459598

RESUMEN

Tenofovir (TFV) is the cornerstone nucleotide reverse transcriptase inhibitor (NtRTI) in many combination antiretroviral therapies prescribed to patients living with HIV/AIDS. Due to poor cell permeability and oral bioavailability, TFV is administered as one of two FDA-approved prodrugs, both of which metabolize prematurely in the liver and/or plasma. This premature prodrug processing depletes significant fractions of each oral dose and causes toxicity in kidney, bone, and liver with chronic administration. Although TFV exalidex (TXL), a phospholipid-derived prodrug of TFV, was designed to address this issue, clinical pharmacokinetic studies indicated substantial hepatic extraction, redirecting clinical development of TXL toward HBV. To circumvent this metabolic liability, we synthesized and evaluated ω-functionalized TXL analogues with dramatically improved hepatic stability. This effort led to the identification of compounds 21 and 23, which exhibited substantially longer t1/2 values than TXL in human liver microsomes, potent anti-HIV activity in vitro, and enhanced pharmacokinetic properties in vivo.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Profármacos , Tenofovir/metabolismo , Tenofovir/farmacología , Animales , Área Bajo la Curva , Infecciones por VIH , Semivida , Humanos , Hígado/metabolismo , Ratones , Estructura Molecular , Oxidación-Reducción , Tenofovir/química
18.
ACS Med Chem Lett ; 11(7): 1491, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32676160

RESUMEN

[This corrects the article DOI: 10.1021/acsmedchemlett.9b00612.].

19.
ACS Med Chem Lett ; 11(4): 491-496, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292555

RESUMEN

Parkinson's disease (PD) is a debilitating and common neurodegenerative disease. New insights implicating c-Abl activation as a driving force in PD have opened a new drug development avenue for PD treatment beyond the symptomatic relief by L-DOPA. BCR-Abl inhibitors, which include nilotinib and ponatinib, have been found to inhibit this process, and nilotinib has shown improvement in outcomes in a 12-patient, nonrandomized trial. However, nilotinib is a potent inhibitor of hERG, a cardiac K+ channel whose inhibition increases risk of sudden death. We used our machine learning approach to predict novel molecules that would inhibit c-Abl while also having minimal liability against hERG. Of our six novel compounds tested, we identified two that had c-Abl potencies comparable to nilotinib, but with significantly improved profiles regarding the hERG channel. Our best compound exhibited a hERG IC50 of 12.1 µM (compared to nilotinib with an IC50 of 0.45 µM and ponatinib with IC50 of 0.767 µM). This work is a step forward for a machine learning enabled, multiparameter optimization of a chemical space and represents a significant advance in the development of novel Parkinson's therapies.

20.
Expert Opin Ther Pat ; 30(2): 87-101, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31854208

RESUMEN

Introduction: The chemokine receptor CXCR4 has been under intense study due to the central role it plays in immune system regulation and the pathology of many human diseases. The FDA approval of the first CXCR4 antagonist drug Plerixafor (i.e. AMD3100, Mozobil®) ushered in an increase in patent activity covering CXCR4 based therapeutic agents over the past decade.Areas covered: This article describes patent documents published during the period of 2010 through 2018 for both small molecules and peptide-based CXCR4 modulators as therapeutic agents. There is an expansion of intellectual property (IP) around existing and new small molecules of clinical interest, including new chemotypes featuring aromatic and aliphatic heterocycles. There is also significant IP covering peptide-based therapeutics, although about half as many in number as those covering small molecules.Expert opinion: In the last decade there has been significant interest in modulators of the CXCR4 receptor, as gauged by the number of patent filings and clinical investigations targeting this receptor for human disease intervention. Seven of the many CXCR4 modulators described herein, that are currently in human clinical trials, are likely to spur the creation of other FDA approved therapeutics in the near future, most likely as immune and oncology drugs.


Asunto(s)
Desarrollo de Medicamentos , Péptidos/farmacología , Receptores CXCR4/efectos de los fármacos , Animales , Bencilaminas , Ciclamas , Compuestos Heterocíclicos/farmacología , Humanos , Patentes como Asunto , Receptores CXCR4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA