Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 587(7835): 638-643, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208942

RESUMEN

Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.


Asunto(s)
Microscopía por Crioelectrón , Gammainfluenzavirus/enzimología , Interacciones Huésped-Patógeno , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Pollos/virología , Genoma Viral/genética , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Modelos Moleculares , Proteínas Nucleares/ultraestructura , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Multimerización de Proteína , ARN Viral/biosíntesis , ARN Viral/genética , Proteínas de Unión al ARN/ultraestructura , ARN Polimerasa Dependiente del ARN/ultraestructura , Células Sf9
2.
Mol Cell ; 70(6): 1101-1110.e4, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29910112

RESUMEN

Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Gammainfluenzavirus/genética , Gammainfluenzavirus/ultraestructura , ARN Polimerasas Dirigidas por ADN/fisiología , Humanos , Unión Proteica , Dominios Proteicos/fisiología , Caperuzas de ARN/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Transcripción Genética , Proteínas Virales/genética , Replicación Viral
3.
Nature ; 573(7773): 287-290, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485076

RESUMEN

Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans1,2. Influenza A viruses contain a segmented negative-sense RNA genome, which is transcribed and replicated by the viral-RNA-dependent RNA polymerase (FluPolA) composed of PB1, PB2 and PA subunits3-5. Although the high-resolution crystal structure of FluPolA of bat influenza A virus has previously been reported6, there are no complete structures available for human and avian FluPolA. Furthermore, the molecular mechanisms of genomic viral RNA (vRNA) replication-which proceeds through a complementary RNA (cRNA) replicative intermediate, and requires oligomerization of the polymerase7-10-remain largely unknown. Here, using crystallography and cryo-electron microscopy, we determine the structures of FluPolA from human influenza A/NT/60/1968 (H3N2) and avian influenza A/duck/Fujian/01/2002 (H5N1) viruses at a resolution of 3.0-4.3 Å, in the presence or absence of a cRNA or vRNA template. In solution, FluPolA forms dimers of heterotrimers through the C-terminal domain of the PA subunit, the thumb subdomain of PB1 and the N1 subdomain of PB2. The cryo-electron microscopy structure of monomeric FluPolA bound to the cRNA template reveals a binding site for the 3' cRNA at the dimer interface. We use a combination of cell-based and in vitro assays to show that the interface of the FluPolA dimer is required for vRNA synthesis during replication of the viral genome. We also show that a nanobody (a single-domain antibody) that interferes with FluPolA dimerization inhibits the synthesis of vRNA and, consequently, inhibits virus replication in infected cells. Our study provides high-resolution structures of medically relevant FluPolA, as well as insights into the replication mechanisms of the viral RNA genome. In addition, our work identifies sites in FluPolA that could be targeted in the development of antiviral drugs.


Asunto(s)
Genoma Viral/genética , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/enzimología , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/química , Microscopía por Crioelectrón , Cristalización , Estructura Terciaria de Proteína , Anticuerpos de Dominio Único/metabolismo , Replicación Viral
4.
J Virol ; 96(5): e0197921, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019720

RESUMEN

Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilized a combination of biochemical, proteomic, and biophysical approaches to characterize the interaction between the viral polymerase and Rab11a. Using pulldown assays, we showed that vRNPs but not complementary RNPs (cRNPs) from infected cell lysates bind to Rab11a. We also showed that the viral polymerase directly interacts with Rab11a and that the C-terminal two-thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627, and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, which has been shown to be important for binding Rab11 family-interacting proteins (Rab11-FIPs), is also important for PB2-C binding, suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. IMPORTANCE The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane, where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study, we showed that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We mapped this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.


Asunto(s)
GTP Fosfohidrolasas , Virus de la Influenza A , ARN Viral , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Replicación Viral , GTP Fosfohidrolasas/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Nucleoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas/genética , Proteómica , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Dispersión del Ángulo Pequeño , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
5.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295915

RESUMEN

Influenza viruses encode a viral RNA-dependent RNA polymerase (FluPol), which is responsible for transcribing and replicating the negative-sense viral RNA (vRNA) genome. FluPol transcribes vRNA using a host-capped mRNA primer and replicates it by synthesizing a positive-sense cRNA intermediate, which is copied back into vRNA. To carry out these functions, FluPol interacts with vRNA and cRNA using conserved promoter elements at the 5' and 3' termini. Recent structural studies have identified a new surface binding site for the 3' vRNA and cRNA promoters on FluPol, referred to as the mode B site. However, the role of this binding site in FluPol function is unknown. In this study, we used a combination of cell-based and biochemical assays to show that the mode B site is important for both viral genome transcription and replication in influenza A virus. Furthermore, we show that the mode B site is not needed for initiating transcription in vitro but is required to synthesize a full-length product. This is consistent with a model in which the 3' terminus of the vRNA template binds in the mode B site during elongation. Our data provide the first functional insights into the role of the mode B site on FluPol, which advances our understanding of FluPol function and influenza virus replication.IMPORTANCE Influenza viruses are responsible for up to 650,000 deaths per year through seasonal epidemics, and pandemics have caused tens of millions of deaths in the past. Most current therapeutics suffer from widespread resistance, creating a need for new drug targets against influenza virus. The virus encodes an RNA-dependent RNA polymerase, which replicates and transcribes the vRNA genome. The polymerase interacts with vRNA and the complementary replicative intermediate cRNA using several specific binding sites; however, the functions associated with these binding sites remain unknown. Here, we functionally characterize a binding site for the 3' vRNA and cRNA promoters. Our data offer insight into the mechanism of viral genome transcription by the influenza virus polymerase and may be applicable to other related viruses.


Asunto(s)
Virus de la Influenza A/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa Dependiente del ARN/genética , Regiones no Traducidas 3'/genética , Sitios de Unión/genética , Genoma Viral/genética , Células HEK293 , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Mutación/genética , Orthomyxoviridae/genética , Proteínas con Motivos de Reconocimiento de ARN , ARN Complementario/genética , ARN Complementario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética/genética , Replicación Viral/genética
7.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875249

RESUMEN

The heterotrimeric influenza A virus RNA-dependent RNA polymerase complex, composed of PB1, PB2, and PA subunits, is responsible for transcribing and replicating the viral RNA genome. The N-terminal endonuclease domain of the PA subunit performs endonucleolytic cleavage of capped host RNAs to generate capped RNA primers for viral transcription. A surface-exposed flexible loop (PA51-72-loop) in the PA endonuclease domain has been shown to be dispensable for endonuclease activity. Interestingly, the PA51-72-loop was found to form different intramolecular interactions depending on the conformational arrangement of the polymerase. In this study, we show that a PA subunit lacking the PA51-72-loop assembles into a heterotrimeric polymerase with PB1 and PB2. We demonstrate that in a cellular context, the PA51-72-loop is required for RNA replication but not transcription by the viral polymerase. In agreement, recombinant viral polymerase lacking the PA51-72-loop is able to carry out cap-dependent transcription but is inhibited in de novo replication initiation in vitro Furthermore, viral RNA (vRNA) synthesis is also restricted during ApG-primed extension, indicating that the PA51-72-loop is required not only for replication initiation but also for elongation on a cRNA template. We propose that the PA51-72-loop plays a role in the stabilization of the replicase conformation of the polymerase. Together, these results further our understanding of influenza virus RNA genome replication in general and highlight a role of the PA endonuclease domain in polymerase function in particular.IMPORTANCE Influenza A viruses are a major global health threat, not only causing significant morbidity and mortality every year but also having the potential to cause severe pandemic outbreaks like the 1918 influenza pandemic. The viral polymerase is a protein complex which is responsible for transcription and replication of the viral genome and therefore is an attractive target for antiviral drug development. For that purpose it is important to understand the mechanisms of how the virus replicates its genome and how the viral polymerase works on a molecular level. In this report, we characterize the role of the flexible surface-exposed PA51-72-loop in polymerase function and offer new insights into the replication mechanism of influenza A viruses.


Asunto(s)
Virus de la Influenza A/enzimología , Virus de la Influenza A/fisiología , Proteínas Mutantes/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteínas Mutantes/genética , Unión Proteica , Multimerización de Proteína , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/genética , Eliminación de Secuencia , Proteínas Virales/genética
8.
J Virol ; 86(24): 13397-406, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015719

RESUMEN

There is a need for vaccines that can protect broadly across all influenza A strains. We have produced a pseudotyped influenza virus based on suppression of the A/PR/8/34 hemagglutinin signal sequence (S-FLU) that can infect cells and express the viral core proteins and neuraminidase but cannot replicate. We show that when given by inhalation to mice, S-FLU is nonpathogenic but generates a vigorous T cell response in the lung associated with markedly reduced viral titers and weight loss after challenge with H1 and H3 influenza viruses. These properties of S-FLU suggest that it may have potential as a broadly protective A virus vaccine, particularly in the setting of a threatened pandemic before matched subunit vaccines become available.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Administración por Inhalación , Animales , Anticuerpos Antivirales/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Neutralización , Linfocitos T/inmunología
9.
Nat Microbiol ; 3(11): 1234-1242, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224800

RESUMEN

The molecular processes that determine the outcome of influenza virus infection in humans are multifactorial and involve a complex interplay between host, viral and bacterial factors1. However, it is generally accepted that a strong innate immune dysregulation known as 'cytokine storm' contributes to the pathology of infections with the 1918 H1N1 pandemic or the highly pathogenic avian influenza viruses of the H5N1 subtype2-4. The RNA sensor retinoic acid-inducible gene I (RIG-I) plays an important role in sensing viral infection and initiating a signalling cascade that leads to interferon expression5. Here, we show that short aberrant RNAs (mini viral RNAs (mvRNAs)), produced by the viral RNA polymerase during the replication of the viral RNA genome, bind to and activate RIG-I and lead to the expression of interferon-ß. We find that erroneous polymerase activity, dysregulation of viral RNA replication or the presence of avian-specific amino acids underlie mvRNA generation and cytokine expression in mammalian cells. By deep sequencing RNA samples from the lungs of ferrets infected with influenza viruses, we show that mvRNAs are generated during infection in vivo. We propose that mvRNAs act as the main agonists of RIG-I during influenza virus infection.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/inmunología , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , ARN Viral/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Proteína 58 DEAD Box/genética , Femenino , Hurones , Virus de la Influenza A/genética , Interferón beta/genética , Interferón beta/metabolismo , Masculino , Mutación , Proteínas Virales/genética , Replicación Viral
10.
Virology ; 396(1): 125-34, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19875144

RESUMEN

Influenza viruses induce a host shut off mechanism leading to the general inhibition of host gene expression in infected cells. Here, we report that the large subunit of host RNA polymerase II (Pol II) is degraded in infected cells and propose that this degradation is mediated by the viral RNA polymerase that associates with Pol II. We detect increased ubiquitylation of Pol II in infected cells and upon the expression of the viral RNA polymerase suggesting that the proteasome pathway plays a role in Pol II degradation. Furthermore, we find that expression of the viral RNA polymerase results in the inhibition of Pol II transcription. We propose that Pol II inhibition and degradation in influenza virus infected cells could represent a viral strategy to evade host antiviral defense mechanisms. Our results also suggest a mechanism for the temporal regulation of viral mRNA synthesis.


Asunto(s)
Virus de la Influenza A/fisiología , ARN Polimerasa II/metabolismo , Línea Celular , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/genética , ARN Viral/biosíntesis , Transcripción Genética , Replicación Viral
11.
Virology ; 394(1): 154-63, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19744689

RESUMEN

The negative sense RNA genome of influenza A virus is transcribed and replicated in the nuclei of infected cells by the viral RNA polymerase. Only four viral polypeptides are required but multiple cellular components are potentially involved. We used fluorescence recovery after photobleaching (FRAP) to characterise the dynamics of GFP-tagged viral ribonucleoprotein (RNP) components in living cells. The nucleoprotein (NP) displayed very slow mobility that significantly increased on formation of transcriptionally active RNPs. Conversely, single or dimeric polymerase subunits showed fast nuclear dynamics that decreased upon formation of heterotrimers, suggesting increased interaction of the full polymerase complex with a relatively immobile cellular component(s). Treatment with inhibitors of cellular transcription indicated that in part, this reflected an interaction with cellular RNA polymerase II. Analysis of mutated influenza virus polymerase complexes further suggested that this was through an interaction between PB2 and RNA Pol II separate from PB2 cap-binding activity.


Asunto(s)
Virus de la Influenza A/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Línea Celular , Núcleo Celular/química , Humanos , Proteínas de la Nucleocápside , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo
12.
J Gen Virol ; 87(Pt 11): 3373-3377, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17030872

RESUMEN

Both transcription and replication of the influenza virus RNA genome are catalysed by a virus-specific RNA polymerase. Recently, an in vitro assay, based on the synthesis of pppApG, for the initiation of replication by recombinant RNA polymerase in the absence of added primer was described. Here, these findings are extended to show that adenosine, AMP and ADP can each substitute for ATP in reactions catalysed by either recombinant ribonucleoprotein or RNA polymerase complexes with either model virion RNA (vRNA) or cRNA promoters. The use of either adenosine or AMP, rather than ATP, provides a convenient, sensitive and easy assay of replication initiation. Moreover, no pppApG was detected when a PB1-PA dimer, rather than the trimeric polymerase, was used to catalyse synthesis, contrasting with a previous report using baculovirus-expressed influenza RNA polymerase. Overall, it is suggested that the heterotrimeric polymerase is essential for the initiation of replication.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Orthomyxoviridae/fisiología , Adenosina/fisiología , Adenosina Difosfato , Adenosina Trifosfato/fisiología , Línea Celular , ARN Polimerasas Dirigidas por ADN/química , Dimerización , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Subunidades de Proteína/metabolismo , ARN Complementario/genética , ARN Complementario/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
13.
J Virol ; 79(13): 8669-74, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15956611

RESUMEN

Influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex of PB1, PB2, and PA. We show that the individually expressed PB2 subunit can be assembled with the coexpressed PB1-PA dimer in vitro into a transcriptionally active complex. Furthermore, we demonstrate that a model viral RNA promoter can bind to the PB1-PA dimer prior to assembly with PB2. Our results are consistent with a recently proposed model for the sequential assembly of viral RNA polymerase complex in which the PB1-PA dimeric complex and the PB2 monomer are transported into the nucleus separately and then assembled in the nucleus.


Asunto(s)
Virus de la Influenza A/genética , Proteínas Virales/metabolismo , Línea Celular , Dimerización , Humanos , Virus de la Influenza A/enzimología , Modelos Biológicos , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transfección , Proteínas Virales/genética
14.
J Virol ; 76(14): 7103-13, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12072510

RESUMEN

The RNA polymerase of the influenza virus is responsible for the transcription and replication of the segmented RNA viral genome during infection of host cells. Polymerase function is known to be strictly dependent on interaction with its RNA promoter, but no attempts to investigate whether the virion RNA (vRNA) promoter stabilizes the polymerase have been reported previously. Here we tested whether the vRNA promoter protects the polymerase against heat inactivation. We prepared partially purified recombinant influenza A virus RNA polymerase, in the absence of influenza virus vRNA promoter sequences, by transient transfection of expression plasmids into human kidney 293T cells. The polymerase was found to be heat labile at 40 degrees C in the absence of added vRNA. However, it was protected from heat inactivation if both the 5' and 3' strands of the vRNA promoter were present. By using the ability of vRNA to protect the enzyme against heat inactivation, we established a novel assay, in conjunction with a mutagenic approach, that was used to test the secondary structure requirement of the vRNA promoter for polymerase binding. Binding required a panhandle structure and the presence of local hairpin loop structures in both the 5' and 3' ends of vRNA, as suggested by the corkscrew model. The interaction of the vRNA promoter with the influenza virus RNA polymerase heterotrimeric complex is likely to favor a particular closed conformation of the complex, thereby ensuring the stability of the RNA polymerase within both the infected cell and the isolated virus.


Asunto(s)
Virus de la Influenza A/enzimología , Regiones Promotoras Genéticas/fisiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Emparejamiento Base , Secuencia de Bases , Línea Celular , Estabilidad de Enzimas , Calor , Humanos , Virus de la Influenza A/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética
15.
J Biol Chem ; 278(22): 20381-8, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12646557

RESUMEN

mRNAs are capped at their 5'-end by a unique cap structure containing N7-methyl guanine. Recognition of the cap structure is of paramount importance in some of the most central processes of gene expression as well as in some viral processes, such as priming of influenza virus transcription. The recent resolution of the structure of three evolutionary unrelated cap binding proteins, the vaccinia viral protein VP39, the eukaryotic translation factor eIF4E, and the nuclear cap-binding protein CBP20 showed that the recognition of the cap structure is achieved by the same general mechanism, i.e. by "sandwiching" of the N7-methyl guanine of the cap structure between two aromatic amino acid residues. The purpose of the present study was to test whether a similar cap recognition mechanism had independently evolved for the RNA polymerase of influenza virus. Combining in vivo and in vitro methods, we characterized two crucial aromatic amino acids, Phe363 and Phe404, in the PB2 subunit of the viral RNA polymerase that are essential for cap binding. The aromaticity of these two residues is conserved in influenza A, B, and C and even in the divergent Thogoto virus PB2 subunits. Thus, our results favor a similar mechanism of cap binding by the influenza RNA polymerase as in the evolutionary unrelated VP39, eIF4E, and CBP20.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Virus de la Influenza A/enzimología , Caperuzas de ARN/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ARN Polimerasas Dirigidas por ADN/química , Globinas/genética , Virus de la Influenza A/genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN Mensajero/genética , Recombinación Genética , Homología de Secuencia de Aminoácido
16.
J Virol ; 76(18): 8989-9001, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12186883

RESUMEN

The influenza A virus RNA-dependent RNA polymerase consists of three subunits-PB1, PB2, and PA. The PB1 subunit is the catalytically active polymerase, catalyzing the sequential addition of nucleotides to the growing RNA chain. The PB2 subunit is a cap-binding protein that plays a role in initiation of viral mRNA synthesis by recruiting capped RNA primers. The function of PA is unknown, but previous studies of temperature-sensitive viruses with mutations in PA have implied a role in viral RNA replication. In this report we demonstrate that the PA subunit is required not only for replication but also for transcription of viral RNA. We mutated evolutionarily conserved amino acids to alanines in the C-terminal region of the PA protein, since the C-terminal region shows the highest degree of conservation between PA proteins of influenza A, B, and C viruses. We tested the effects of these mutations on the ability of RNA polymerase to transcribe and replicate viral RNA. We also tested the compatibility of these mutations with viral viability by using reverse-genetics techniques. A mutant with a histidine-to-alanine change at position 510 (H510A) in the PA protein of influenza A/WSN/33 virus showed a differential effect on transcription and replication. This mutant was able to perform replication (vRNA-->cRNA-->vRNA), but its transcriptional activity (vRNA-->mRNA) was negligible. In vitro analyses of the H510A recombinant polymerase, by using transcription initiation, vRNA-binding, capped-RNA-binding, and endonuclease assays, suggest that the primary defect of this mutant polymerase is in its endonuclease activity.


Asunto(s)
Sustitución de Aminoácidos , Endonucleasas/metabolismo , Virus de la Influenza A/enzimología , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Virus de la Influenza A/genética , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , ARN Polimerasa Dependiente del ARN/química , Proteínas Recombinantes , Transcripción Genética , Transfección , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA