Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Fish Biol ; 100(5): 1158-1170, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174488

RESUMEN

The Patagonian toothfish, Dissostichus eleginoides, is one of the largest predatory fishes inhabiting Southern Ocean waters spanning the Antarctic Polar Front (APF), a prominent biogeographic boundary restricting gene flow and driving species divergence between Antarctic and sub-Antarctic waters. In the light of emerging threats to toothfish conservation and sustainability, this study investigated genetic [mtDNA sequences and genome wide nuclear single nucleotide polymorphisms (SNPs)] and morphological data to critically evaluate the taxonomic status of toothfish north (Chile and Patagonian shelf) and south (South Georgia and South Sandwich Islands) of the APF. mtDNA revealed reciprocally monophyletic lineages on either side of the APF with coalescent analysis indicating these diverged during the Pleistocene. Integration with data from other sources suggests the Chilean/Patagonian lineage is endemic. SNP analysis confirmed restricted nuclear gene flow between both groups and revealed a consensus suite of positive outlier SNPs compatible with adaptive divergence between these groups. Finally, several morphological features permit unequivocal assignment of individuals to either of the clades. Based on the genetic, phenotypic and ecological divergence, the authors propose that toothfish on either side of the APF be recognised as distinct species, with the name D. eleginoides used for toothfish occurring in South American waters north of the APF and toothfish south of the APF being classified using the new name D. australis reflecting their southern distribution.


Asunto(s)
Perciformes , Animales , Regiones Antárticas , ADN Mitocondrial/genética , Genoma , Genómica , Perciformes/genética
2.
J Evol Biol ; 34(9): 1352-1361, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34165857

RESUMEN

In polygamous species, the mode of sperm storage in females influences evolution of sperm quantitative and qualitative traits because it provides the arena for sperm competition, cryptic female choice and fertilization processes. In this study, we compared ejaculate traits of two squid species, Heterololigo bleekeri and Loligo reynaudii. Both species show dimorphic sperm traits associated with alternative reproductive tactics where consort and sneaker males transfer sperm to different storage sites within a female (on the oviduct and near the mouth, respectively). Due to differences in reproductive behaviours and sperm placement, sperm competition risk is expected to be higher in sneakers than in consorts of both species and higher overall in L. reynaudii. Our results demonstrate that the instantaneous number of released sperm is adjusted to the expected sperm competition risk via an elaborate sperm package. Consort sperm are similar in size; however, sneaker sperm have a significantly longer flagellum in H. bleekeri than in L. reynaudii, most likely due to intra-tactic conflicts associated with sperm storage conditions. From consideration of the different mating tactics, we suggest that while levels of sperm competition determine quantitative traits, sperm quality traits are determined more by the mode of sperm storage and fertilization.


Asunto(s)
Decapodiformes , Conducta Sexual Animal , Animales , Femenino , Masculino , Reproducción , Recuento de Espermatozoides , Espermatozoides
3.
J Fish Biol ; 96(6): 1434-1443, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32154919

RESUMEN

Two geographically nonoverlapping species are currently described within the sparid genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Mediterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum (Steentjie) considered endemic to southern Africa. To address prominent knowledge gaps this study investigated range-wide phylogeographic structure across both species. Mitochondrial DNA sequences revealed deep phylogeographic structuring with four regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and three more closely related Atlantic clades [NE Atlantic, Angola and South Africa (corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentiation of S. emarginatum supports its validity as a distinct species endemic to South African waters. However, the results also indicate that S. cantharus may be a cryptic species complex wherein the various regional lineages represent established/incipient species. A robust multilocus genetic assessment combining morphological data and detailing interactions among lineages is needed to determine the full diversity within Spondyliosoma and the most adequate biological and taxonomic status.


Asunto(s)
Variación Genética , Perciformes/clasificación , África , Animales , Océano Atlántico , ADN Mitocondrial/genética , Europa (Continente) , Haplotipos , Mar Mediterráneo , Perciformes/genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
J Fish Biol ; 96(3): 795-805, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32031244

RESUMEN

Two sister species of horse mackerel (Trachurus trachurus and T. capensis) are described that are intensively harvested in East Atlantic waters. To address long-standing uncertainties as to their respective geographical ranges, overlap and intraspecific population structure this study combined genetic (mitochondrial DNA and microsatellite) analysis and targeted sampling of the hitherto understudied West African coast. mtDNA revealed two reciprocally monophyletic clades corresponding to each species with interspecies nuclear differentiation supported by FST values. The T. trachurus clade was found across the north-east Atlantic down to Ghana but was absent from Angolan and South African samples. The T. capensis clade was found only in South Africa, Angola and a single Ghanaian individual. This pattern suggests that both species may overlap in the waters around Ghana. The potential for cryptic hybridization and/or indiscriminate harvesting of both species in the region is discussed. For T. capensis mtDNA supports high gene flow across the Benguela upwelling system, which fits with the species' ecology. The data add to evidence of a lack of significant genetic structure throughout the range of T. trachurus though the assumption of demographic panmixia is cautioned against. For both species, resolution of stock recruitment heterogeneity relevant to fishery management, as well as potential hybridization, will require more powerful genomic analyses.


Asunto(s)
Demografía , Perciformes/clasificación , Perciformes/genética , África Austral , Animales , ADN Mitocondrial/genética , Flujo Génico , Genética de Población , Repeticiones de Microsatélite/genética
5.
Mol Phylogenet Evol ; 106: 44-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27640955

RESUMEN

Although recent years have seen an increase in genetic analyses that identify new species of cephalopods and phylogeographic patterns, the loliginid squid of South America remain one of the least studied groups. The suggestion that Doryteuthis plei may represent distinct lineages within its extensive distribution along the western Atlantic coasts from Cape Hatteras, USA (36°N) to northern Argentina (35°S) is consistent with significant variation in a number of environmental variables along this range including in both temperature and salinity. In the present study D. plei samples were obtained from a large number of localities along the western Atlantic coasts to investigate the distribution of these possible species in a phylogeographic context. Phylogeographic analyses were performed using the mitochondrial Cytochrome Oxidase I gene and nuclear Rhodopsin gene. Divergence times were estimated using Bayesian strict clock dating with calibrations based on fossil records for divergence from the lineage containing Vampyroteuthis infernalis (162mya), the probable origins of the North American loliginids (45mya), and the European loliginids (20mya) and fossil statolith from Doryteuthis opalescens (3mya). Our results suggest a deep genetic divergence within Doryteuthis plei. The currently described specie consists of two genetically distinct clades (pair-wise genetic divergence of between 7.7 and 9.1%). One clade composed of individuals collected in northwestern Atlantic and Central Caribbean Atlantic waters and the other from southwestern Atlantic waters. The divergence time and sampling locations suggest the speciation process at approximately 16Mya, which is in full agreement with the middle Miocene orogeny of the Caribbean plate, ending up with the formation of the Lesser Antilles and the adjacent subduction zone, coinciding with a particularly low global sea level, resulting in the practical absence of continental shelves at the area, and therefore an effective geographic barrier for D. plei. Furthermore, this study also provides evidence of previously undocumented sub-population structuring in the Gulf of Mexico.


Asunto(s)
Cefalópodos/clasificación , Animales , Océano Atlántico , Teorema de Bayes , Evolución Biológica , Región del Caribe , Cefalópodos/genética , Citocromos b/genética , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Fósiles , Variación Genética , Haplotipos , Filogenia
6.
Glob Chang Biol ; 20(9): 2765-77, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24753154

RESUMEN

Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management.


Asunto(s)
Distribución Animal/fisiología , Conservación de los Recursos Naturales/métodos , Calentamiento Global/estadística & datos numéricos , Hibridación Genética/fisiología , Perciformes/genética , Agua de Mar/química , Angola , Animales , Océano Atlántico , Explotaciones Pesqueras/legislación & jurisprudencia , Explotaciones Pesqueras/métodos , Explotaciones Pesqueras/estadística & datos numéricos , Namibia , Perciformes/fisiología , Temperatura
7.
Ecol Evol ; 14(4): e11205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584773

RESUMEN

Octopus cyanea (Gray, 1849), abundant in the South-West Indian Ocean (SWIO), constitutes a vital resource for both subsistence and commercial fisheries. However, despite this socioeconomic importance, and recent indications of overfishing, little is known about the population structure of O. cyanea in the region. To inform sustainable management strategies, this study assessed the spatio-temporal population structure and genetic variability of O. cyanea at 20 sites in the SWIO (Kenya, Tanzania, Mozambique, Madagascar, Mauritius, Rodrigues, and the Seychelle Islands) by complementary analysis of mitochondrial DNA (mtDNA) noncoding region (NCR) sequences and microsatellite markers. MtDNA analysis revealed a shallow phylogeny across the region, with demographic tests suggesting historic population fluctuations that could be linked to glacial cycles. Contrary to expectations, NCR variation was comparable to other mtDNA regions, indicating that the NCR is not a hypervariable region. Both nuclear and mtDNA marker types revealed a lack of genetic structure compatible with high gene flow throughout the region. As adults are sedentary, this gene flow likely reflects connectivity by paralarval dispersal. All samples reported heterozygote deficits, which, given the overall absence of structure, likely reflect ephemeral larval recruitment variability. Levels of mtDNA and nuclear variability were similar at all locations and congruent with those previously reported for harvested Octopodidae, implying resilience to genetic erosion by drift, providing current stock sizes are maintained. However, as O. cyanea stocks in the SWIO represent a single, highly connected population, fisheries may benefit from additional management measures, such as rotational closures aligned with paralarval ecology and spanning geopolitical boundaries.

8.
Mol Phylogenet Evol ; 68(2): 293-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23567021

RESUMEN

The family Loliginidae Lesueur, 1821, is currently considered to include seven genera and approximately 50 species of neritic and coastal squids. These commercially important species occur in tropical and temperate coastal waters around the world. The taxonomy of the family has been revised a number of times in recent years, focusing in particular on genera such as Doryteuthis, Sepioteuthis, Alloteuthis, and Uroteuthis, which are represented by populations in the New World, Oceania, Europe/Africa, and Asia. However, no detailed phylogenetic analysis is available for the loliginids of the southern Atlantic, in particular the genus Doryteuthis. The present molecular study analyzed 81 loliginid taxa from around the world. The partial sequencing of the mitochondrial 16S and Cytochrome Oxidase I genes, and the nuclear rhodopsin gene revealed a number of important patterns, recovering the monophyletic status of the majority of the genera and revealing possible cryptic species in Doryteuthis plei D. pealei, Uroteuthis duvauceli and Sepioteuthis lessoniana.


Asunto(s)
ADN Mitocondrial/genética , Decapodiformes/genética , Filogenia , Animales , Océano Atlántico , Teorema de Bayes , Núcleo Celular/genética , Decapodiformes/clasificación , Complejo IV de Transporte de Electrones/genética , Evolución Molecular , Modelos Genéticos , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Rodopsina/genética
9.
Environ Entomol ; 52(5): 802-813, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37590329

RESUMEN

Bark-feeding and wood-boring insect pests can have significant negative impacts on conifers and wood production. The damage they cause is expected to increase in the future due to climate change and the growth of international trade. This study employed DNA barcoding of beetle juveniles (Coleoptera) sampled from standing trap trees and cut log piles at regular intervals over a 2-yr period to monitor the beetle community dynamics and associated environmental factors. Tree species was found to have a major influence on beetle communities, most strikingly at the start of early decay stages. Lower species diversity was reported from standing trap tree samples compared to log pile samples, likely due to higher residual defences in dying and recently dead trees. While the species identified from standing trap trees are more likely to be a threat to the forestry sector, the species found in the log piles are more likely to be beneficial due to their high abundance and their ability to compete with pests for breeding substrate. The analysis of beetles collected inside trees revealed additional information on ontogenetic niches and host preferences beyond that acquired solely from flight interception trap data. Our results offer insights on community composition and dynamics of bark-feeding and wood-boring insect species in Welsh conifer forests and provide resources for monitoring and management of potential pest species.


Asunto(s)
Escarabajos , Madera , Animales , Corteza de la Planta , Código de Barras del ADN Taxonómico , Comercio , Factores de Tiempo , Internacionalidad , Escarabajos/genética , Árboles/genética
10.
Conserv Physiol ; 11(1): coad026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179704

RESUMEN

Anthropogenic-induced climate change is having profound impacts on aquatic ecosystems, and the resilience of fish populations will be determined by their response to these impacts. The northern Namibian coast is an ocean warming hotspot, with temperatures rising faster than the global average. The rapid warming in Namibia has had considerable impacts on marine fauna, such as the southern extension of the distribution of Argyrosomus coronus from southern Angola into northern Namibian waters, where it now overlaps and hybridizes with the closely related Namibian species, A. inodorus. Understanding how these species (and their hybrids) perform at current and future temperatures is vital to optimize adaptive management for Argyrosomus species. Intermittent flow-through respirometry was used to quantify standard and maximum metabolic rates for Argyrosomus individuals across a range of temperatures. The modelled aerobic scope (AS) of A. inodorus was notably higher at cooler temperatures (12, 15, 18 and 21°C) compared with that of A. coronus, whereas the AS was similar at 24°C. Although only five hybrids were detected and three modelled, their AS was in the upper bounds of the models at 15, 18 and 24°C. These findings suggest that the warming conditions in northern Namibia may increasingly favour A. coronus and promote the poleward movement of the leading edge of their southern distribution. In contrast, the poor aerobic performance of both species at cold temperatures (12°C) suggests that the cold water associated with the permanent Lüderitz Upwelling Cell in the south may constrain both species to central Namibia. This is most concerning for A. inodorus because it may be subjected to a considerable coastal squeeze.

11.
Mol Ecol ; 21(14): 3391-402, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22443459

RESUMEN

The last glaciation was a dynamic period with strong impact on the demography of many species and populations. In recent years, mitochondrial DNA sequences retrieved from radiocarbon-dated remains have provided novel insights into the history of Late Pleistocene populations. However, genotyping of loci from the nuclear genome may provide enhanced resolution of population-level changes. Here, we use four autosomal microsatellite DNA markers to investigate the demographic history of woolly mammoths (Mammuthus primigenius) in north-eastern Siberia from before 60 000 years ago up until the species' final disappearance c.4000 years ago. We identified two genetic groups, implying a marked temporal genetic differentiation between samples with radiocarbon ages older than 12 thousand radiocarbon years before present (ka) and those younger than 9ka. Simulation-based analysis indicates that this dramatic change in genetic composition, which included a decrease in individual heterozygosity of approximately 30%, was due to a multifold reduction in effective population size. A corresponding reduction in genetic variation was also detected in the mitochondrial DNA, where about 65% of the diversity was lost. We observed no further loss in genetic variation during the Holocene, which suggests a rapid final extinction event.


Asunto(s)
Evolución Molecular , Variación Genética , Genotipo , Mamuts/genética , Repeticiones de Microsatélite , Animales , Simulación por Computador , ADN Mitocondrial/genética , Extinción Biológica , Fósiles , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Siberia
12.
Sci Rep ; 12(1): 240, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997149

RESUMEN

Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.


Asunto(s)
Anopheles/genética , Mosquitos Vectores/genética , Distribución Animal , Animales , Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Anopheles/fisiología , Femenino , Inundaciones , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Malaria , Masculino , Control de Mosquitos , Mosquitos Vectores/clasificación , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/fisiología , Filogenia , Estaciones del Año , Zambia
13.
Nature ; 433(7023): 212, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15662403

RESUMEN

Sexual mimicry among animals is widespread, but does it impart a fertilization advantage in the widely accepted 'sneak-guard' model of sperm competition? Here we describe field results in which a dramatic facultative switch in sexual phenotype by sneaker-male cuttlefish leads to immediate fertilization success, even in the presence of the consort male. These results are surprising, given the high rate at which females reject copulation attempts by males, the strong mate-guarding behaviour of consort males, and the high level of sperm competition in this complex mating system.


Asunto(s)
Adaptación Biológica , Conducta Competitiva/fisiología , Fertilización/fisiología , Moluscos/fisiología , Conducta Sexual Animal/fisiología , Animales , Copulación/fisiología , Femenino , Genotipo , Masculino , Moluscos/genética , Fenotipo , Caracteres Sexuales , Razón de Masculinidad
14.
Parasit Vectors ; 14(1): 91, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522944

RESUMEN

BACKGROUND: The Barotse floodplains of the upper Zambezi River and its tributaries are a highly dynamic environment, with seasonal flooding and transhumance presenting a shifting mosaic of potential larval habitat and human and livestock blood meals for malaria vector mosquitoes. However, limited entomological surveillance has been undertaken to characterize the vector community in these floodplains and their environs. Such information is necessary as, despite substantial deployment of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) against Anopheles vectors, malaria transmission persists across Barotseland in Zambia's Western Province. METHODS: Geographically extensive larval surveys were undertaken in two health districts along 102 km of transects, at fine spatial resolution, during a dry season and following the peak of the successive wet season. Larvae were sampled within typical Anopheles flight range of human settlements and identified through genetic sequencing of cytochrome c oxidase I and internal transcribed spacer two regions of mitochondrial and nuclear DNA. This facilitated detailed comparison of taxon-specific abundance patterns between ecological zones differentiated by hydrological controls. RESULTS: An unexpected paucity of primary vectors was revealed, with An. gambiae s.l. and An. funestus representing < 2% of 995 sequenced anophelines. Potential secondary vectors predominated in the vector community, primarily An. coustani group species and An. squamosus. While the distribution of An. gambiae s.l. in the study area was highly clustered, secondary vector species were ubiquitous across the landscape in both dry and wet seasons, with some taxon-specific relationships between abundance and ecological zones by season. CONCLUSIONS: The diversity of candidate vector species and their high relative abundance observed across diverse hydro-ecosystems indicate a highly adaptable transmission system, resilient to environmental variation and, potentially, interventions that target only part of the vector community. Larval survey results imply that residual transmission of malaria in Barotseland is being mediated predominantly by secondary vector species, whose known tendencies for crepuscular and outdoor biting renders them largely insensitive to prevalent vector control methods.


Asunto(s)
Anopheles/fisiología , Larva/fisiología , Malaria/transmisión , Mosquitos Vectores/fisiología , Distribución Animal , Animales , Anopheles/genética , Estudios Transversales , Ecosistema , Conducta Alimentaria , Humanos , Larva/genética , Larva/parasitología , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Estaciones del Año , Zambia
15.
J Invertebr Pathol ; 105(2): 194-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600085

RESUMEN

This is the first study comparing physiological responses of three decapod species to infection by parasites of the genus Hematodinium, which belongs to the dinoflagellate-like Syndinea. Responses varied profoundly between the crabs Carcinus maenas and Cancer pagurus (Brachyura), but also differed to those of hermit crabs, Pagurus bernhardus (Anomura). Osmoregulatory capacity was reduced significantly in Hematodinium-infected C. maenas, haemolymph pH increased in parasitised C. pagurus and P. bernhardus, and L-lactate concentration decreased in infected P. bernhardus. Changes to tissues and exoskeletons were observed in C. pagurus, but not in C. maenas and P. bernhardus.


Asunto(s)
Decápodos/parasitología , Dinoflagelados/patogenicidad , Infecciones Protozoarias en Animales/inmunología , Animales , Decápodos/inmunología , Dinoflagelados/inmunología , Interacciones Huésped-Parásitos/inmunología
16.
Front Physiol ; 10: 1281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680998

RESUMEN

Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.

17.
Mar Biodivers ; 48(4): 2233-2235, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30931013

RESUMEN

The big blue octopus, Octopus cyanea, occurs on coral reefs throughout the Indo-Pacific region from East Africa to the Hawaiian Islands, wherein it is of great ecological and socio-economic importance. However, many components of its intraspecific biodiversity, such as population structure, are unresolved due to a lack of informative genetic markers. To address this issue, which may compromise conservation and sustainability efforts, the development and characterisation of the first species-specific microsatellite loci for O. cyanea are described here. The eight loci were characterised by the genotyping of 40 adults from Madagascar, which revealed an average of 13.5 alleles per locus (range 9-18). The observed and expected heterozygosity per locus ranged from 0.432 to 0.949 and from 0.481 to 0.989, respectively. No evidence of linkage disequilibrium was detected between pairs of loci. Genotype proportions at six loci conformed to Hardy-Weinberg equilibrium expectations, with two loci exhibiting significant heterozygote deficits. These loci are applicable to multiple areas of eco-evolutionary research and, thus, represent a valuable resource for future studies of O. cyanea.

18.
Ecol Evol ; 8(4): 2182-2195, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29468035

RESUMEN

Analysis of genetic variation can provide insights into ecological and evolutionary diversification which, for commercially harvested species, can also be relevant to the implementation of spatial management strategies and sustainability. In comparison with other marine biodiversity hot spots, there has been less genetic research on the fauna of the southwest Indian Ocean (SWIO). This is epitomized by the lack of information for lethrinid fish, which support socioeconomically important fisheries in the region. This study combines comparative phylogeographic and population genetic analyses with ecological niche modeling to investigate historical and contemporary population dynamics of two species of emperor fish (Lethrinus mahsena and Lethrinus harak) across the SWIO. Both species shared similarly shallow phylogeographic patterns and modeled historical (LGM) habitat occupancies. For both species, allele frequency and kinship analyses of microsatellite variation revealed highly significant structure with no clear geographical pattern and nonrandom genetic relatedness among individuals within samples. The genetic patterns for both species indicate recurrent processes within the region that prevent genetic mixing, at least on timescales of interest to fishery managers, and the potential roles of recruitment variability and population isolation are discussed in light of biological and environmental information. This consistency in both historical and recurrent population processes indicates that the use of model species may be valuable in management initiatives with finite resources to predict population structure, at least in cases wherein biogeographic and ecological differences between taxa are minimized. Paradoxically, mtDNA sequencing and microsatellite analysis of samples from the Seychelles revealed a potential cryptic species occurring in sympatry with, and seemingly morphologically identical to, L. mahsena. BLAST results point to the likely misidentification of species and incongruence between voucher specimens, DNA barcodes, and taxonomy within the group, which highlights the utility and necessity of genetic approaches to characterize baseline biodiversity in the region before such model-based methods are employed.

19.
Mar Biol ; 165(1): 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29238097

RESUMEN

Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that were collected from seahorse populations located along the European and North African coastlines to help inform management decisions for European seahorses. This study confirms the presence of only two native seahorse species (Hippocampus guttulatus and H. hippocampus) across Europe, with sporadic occurrence of non-native seahorse species in European waters. For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and presence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat types as the first step to successful assessment, monitoring and conservation management of these Data Deficient species.

20.
Proc Biol Sci ; 274(1623): 2249-57, 2007 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-17623644

RESUMEN

Allopatric divergence in peripheral habitats may lead to rapid evolution of populations with novel phenotypes. In this study we provide the first evidence that isolation in peripheral habitats may have played a critical role in generation of Lake Malawi's cichlid fish diversity. We show that Lake Chilingali, a satellite lake 11.5 km from the shore of Lake Malawi, contains a breeding population of Rhamphochromis, a predatory genus previously thought to be restricted to Lake Malawi and permanently connected water bodies. The Lake Chilingali population is the smallest known Rhamphochromis, has a unique male nuptial colour pattern and has significant differentiation in mitochondrial DNA from Lake Malawi species. In laboratory mate choice trials with a candidate sister population from Lake Malawi, females showed a strong tendency to mate assortatively indicating that they are incipient biological species. These data support the hypothesis that isolation and reconnection of peripheral habitats due to lake level changes have contributed to the generation of cichlid diversity within African lakes. Such cycles of habitat isolation and reconnection may also have been important in evolutionary diversification of numerous other abundant and wide-ranging aquatic organisms, such as marine fishes and invertebrates.


Asunto(s)
Evolución Biológica , Cíclidos/genética , Agua Dulce , Especiación Genética , Animales , Biodiversidad , Cíclidos/anatomía & histología , Cíclidos/clasificación , Cíclidos/fisiología , Color , Femenino , Geografía , Haplotipos , Masculino , Preferencia en el Apareamiento Animal , Fenotipo , Filogenia , Aislamiento Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA