Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096418

RESUMEN

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Asunto(s)
Carbapenémicos/farmacología , Elementos Transponibles de ADN/genética , Brotes de Enfermedades , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/efectos de los fármacos , Factores R/genética , Resistencia betalactámica/genética , Proteínas Bacterianas/genética , Boston/epidemiología , Células Clonales , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/transmisión , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/transmisión , Variación Genética , Genoma Bacteriano , Humanos , Estudios Prospectivos , Alineación de Secuencia , Transformación Bacteriana , Resistencia betalactámica/fisiología , beta-Lactamasas/genética
2.
PLoS Med ; 12(9): e1001880, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26418737

RESUMEN

BACKGROUND: The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. METHODS AND FINDINGS: We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937-1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974-1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988-1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe. CONCLUSIONS: In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.


Asunto(s)
Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Adulto , Brotes de Enfermedades , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia de ADN , Sudáfrica/epidemiología
3.
Genome Res ; 22(11): 2270-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22829535

RESUMEN

Exceptionally accurate genome reference sequences have proven to be of great value to microbial researchers. Thus, to date, about 1800 bacterial genome assemblies have been "finished" at great expense with the aid of manual laboratory and computational processes that typically iterate over a period of months or even years. By applying a new laboratory design and new assembly algorithm to 16 samples, we demonstrate that assemblies exceeding finished quality can be obtained from whole-genome shotgun data and automated computation. Cost and time requirements are thus dramatically reduced.


Asunto(s)
Bacterias/genética , Genoma Bacteriano , Biblioteca Genómica , Análisis de Secuencia de ADN/métodos , Algoritmos
4.
Genome Res ; 22(11): 2241-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22800726

RESUMEN

Eliminating the bacterial cloning step has been a major factor in the vastly improved efficiency of massively parallel sequencing approaches. However, this also has made it a technical challenge to produce the modern equivalent of the Fosmid- or BAC-end sequences that were crucial for assembling and analyzing complex genomes during the Sanger-based sequencing era. To close this technology gap, we developed Fosill, a method for converting Fosmids to Illumina-compatible jumping libraries. We constructed Fosmid libraries in vectors with Illumina primer sequences and specific nicking sites flanking the cloning site. Our family of pFosill vectors allows multiplex Fosmid cloning of end-tagged genomic fragments without physical size selection and is compatible with standard and multiplex paired-end Illumina sequencing. To excise the bulk of each cloned insert, we introduced two nicks in the vector, translated them into the inserts, and cleaved them. Recircularization of the vector via coligation of insert termini followed by inverse PCR generates a jumping library for paired-end sequencing with 101-base reads. The yield of unique Fosmid-sized jumps is sufficiently high, and the background of short, incorrectly spaced and chimeric artifacts sufficiently low, to enable applications such as mapping of structural variation and scaffolding of de novo assemblies. We demonstrate the power of Fosill to map genome rearrangements in a cancer cell line and identified three fusion genes that were corroborated by RNA-seq data. Our Fosill-powered assembly of the mouse genome has an N50 scaffold length of 17.0 Mb, rivaling the connectivity (16.9 Mb) of the Sanger-sequencing based draft assembly.


Asunto(s)
Escherichia coli/genética , Vectores Genéticos/genética , Genoma Bacteriano , Genoma Fúngico , Biblioteca Genómica , Schizosaccharomyces/genética , Análisis de Secuencia de ADN/métodos , Animales , Reordenamiento Génico , Ratones , Ratones Endogámicos C57BL
5.
PLoS Pathog ; 8(3): e1002529, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412369

RESUMEN

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.


Asunto(s)
Genoma Viral/genética , Estudio de Asociación del Genoma Completo , Infecciones por VIH/virología , VIH-1/genética , Evasión Inmune/inmunología , Linfocitos T CD8-positivos/inmunología , Variación Genética , Variación Estructural del Genoma , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Evasión Inmune/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Viral/análisis , Análisis de Secuencia de ARN , Vacunas Virales/inmunología
6.
Proc Natl Acad Sci U S A ; 108(4): 1513-8, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21187386

RESUMEN

Massively parallel DNA sequencing technologies are revolutionizing genomics by making it possible to generate billions of relatively short (~100-base) sequence reads at very low cost. Whereas such data can be readily used for a wide range of biomedical applications, it has proven difficult to use them to generate high-quality de novo genome assemblies of large, repeat-rich vertebrate genomes. To date, the genome assemblies generated from such data have fallen far short of those obtained with the older (but much more expensive) capillary-based sequencing approach. Here, we report the development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform. The resulting draft genome assemblies have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome. In particular, the base accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5 Mb for human and 7.2 Mb for mouse) approach those obtained with capillary-based sequencing. The combination of improved sequencing technology and improved computational methods should now make it possible to increase dramatically the de novo sequencing of large genomes. The ALLPATHS-LG program is available at http://www.broadinstitute.org/science/programs/genome-biology/crd.


Asunto(s)
Algoritmos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Genoma/genética , Humanos , Internet , Ratones , Reproducibilidad de los Resultados
7.
Methods Mol Biol ; 2517: 205-214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674956

RESUMEN

Genomic studies of Candida auris are underpinned by the generation of high-quality genome assemblies. These reference genomes have been essential for investigations of the evolution and epidemiology of this emerging fungal pathogen. In addition to genomic epidemiology studies of local outbreaks and analysis of the global emergence of this species, comparisons of genomes of isolates from the five major clades have revealed differences in gene content and genomic structure. Here, we provide a detailed protocol for generating complete genome assemblies for C. auris.


Asunto(s)
Candida , Candidiasis , Antifúngicos/uso terapéutico , Candida/genética , Candida auris , Candidiasis/microbiología , Brotes de Enfermedades , Genómica , Pruebas de Sensibilidad Microbiana
8.
mBio ; 13(1): e0257421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35089059

RESUMEN

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Asunto(s)
Histoplasma , Micosis , Humanos , Sintenía , Australia , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromosomas , Genoma Fúngico
9.
Genome Med ; 14(1): 37, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379360

RESUMEN

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS: To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS: Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS: Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.


Asunto(s)
Carbapenémicos , Transferencia de Gen Horizontal , Antibacterianos/farmacología , Carbapenémicos/farmacología , Humanos , Plásmidos/genética , Estudios Prospectivos
10.
Nat Commun ; 12(1): 6688, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795258

RESUMEN

While emerging fungi threaten global biodiversity, the paucity of fungal genome assemblies impedes thoroughly characterizing epidemics and developing effective mitigation strategies. Here, we generate de novo genomic assemblies for six outbreaks of the emerging pathogen Batrachochytrium salamandrivorans (Bsal). We reveal the European epidemic currently damaging amphibian populations to comprise multiple, highly divergent lineages demonstrating isolate-specific adaptations and metabolic capacities. In particular, we show extensive gene family expansions and acquisitions, through a variety of evolutionary mechanisms, and an isolate-specific saprotrophic lifecycle. This finding both explains the chytrid's ability to divorce transmission from host density, producing Bsal's enigmatic host population declines, and is a key consideration in developing successful mitigation measures.


Asunto(s)
Batrachochytrium/genética , Evolución Molecular , Variación Genética , Micosis/epidemiología , Aclimatación/genética , Anfibios/microbiología , Animales , Batrachochytrium/clasificación , Batrachochytrium/fisiología , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Quitridiomicetos/fisiología , Brotes de Enfermedades , Epidemias , Europa (Continente)/epidemiología , Genes Fúngicos/genética , Genoma Fúngico/genética , Micosis/microbiología , Filogenia , Análisis de Secuencia de ADN/métodos , Urodelos/microbiología
12.
Nat Genet ; 48(5): 544-51, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27064254

RESUMEN

A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs such as D-cycloserine. Here we used the whole-genome sequences from 498 strains of M. tuberculosis to identify new resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss of function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss of function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted use of this toxic drug among patients with susceptible infections.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Cicloserina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Alanina-Deshidrogenasa/genética , Alanina-Deshidrogenasa/metabolismo , Alanina Racemasa/genética , Antituberculosos , Farmacorresistencia Bacteriana/genética , Técnicas de Inactivación de Genes , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/enzimología
13.
Genome Biol ; 10(10): R103, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19796385

RESUMEN

We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).


Asunto(s)
Bacterias/genética , Hongos/genética , Genoma/genética , Genómica/métodos , Programas Informáticos , Emparejamiento Base/genética , Reproducibilidad de los Resultados
14.
Plasmid ; 49(3): 233-52, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12749836

RESUMEN

Two plasmids, 76 and 148 kb in size, isolated from Ruegeria strain PR1b were entirely sequenced. These are the first plasmids to be characterized from this genus of marine bacteria. Sequence analysis revealed a biased distribution of function among the putative proteins encoded on the two plasmids. The smaller plasmid, designated pSD20, encodes a large number of putative proteins involved in polysaccharide biosynthesis and export. The larger plasmid, designated pSD25, primarily encodes putative proteins involved in the transport of small molecules and in DNA mobilization. Sequence analysis revealed uncommon potential replication systems on both plasmids. pSD25, the first repABC-type replicon isolated from the marine environment, actually contains two repABC-type replicons. pSD20 contains a complex replication region, including a replication origin and initiation protein similar to iteron-containing plasmids (such as pSW500 from the plant pathogen Erwinia stewartii) linked to putative RepA and RepB stabilization proteins of a repABC-type replicon and is highly homologous to a plasmid from the phototrophic bacterium Rhodobacter sphaeroides. Given the nature of the putative proteins encoded by both plasmids it is possible that these plasmids enhance the metabolic and physiological flexibility of the host bacterium, and thus its adaptation to the marine sediment environment.


Asunto(s)
Plásmidos/metabolismo , Rhodobacteraceae/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , ADN/metabolismo , Replicación del ADN , ADN Bacteriano , Erwinia/metabolismo , Polisacáridos/metabolismo , Recombinación Genética , Origen de Réplica , Replicón , Rhodobacter sphaeroides/metabolismo
15.
Proc Natl Acad Sci U S A ; 99(14): 9509-14, 2002 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-12093901

RESUMEN

The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.


Asunto(s)
Chlorobi/genética , Chlorobi/metabolismo , Genoma Bacteriano , Dióxido de Carbono/metabolismo , Cromosomas Bacterianos/genética , Ciclo del Ácido Cítrico , Reparación del ADN , Transporte de Electrón , Duplicación de Gen , Modelos Biológicos , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Estrés Oxidativo , Fotosíntesis , Filogenia , Biosíntesis de Proteínas , Pirroles/metabolismo , Azufre/metabolismo , Terpenos/metabolismo , Tetrapirroles , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA