RESUMEN
We have developed a mouse model of parenteral nutrition-associated liver disease (PNALD) in which parenteral nutrition (PN) infusion results in cholestatic liver injury. In the liver, the master circadian genes Arntl/Bmal drive rhythmic gene expression and regulate circadian expression of hepatic functions including bile acid synthesis. The aim of this study was to examine the effect of continuous PN on ileal and hepatic expression of circadian regulatory (CR) genes, farnesoid X receptor (FXR) signaling, and bile acid synthesis in mice. Wild-type mice were exposed to ad libitum Chow or continuous soy oil lipid emulsion-based PN infusion through a central venous catheter for 4 days (PN). Water was provided ad libitum, but no nutrients were provided enterally. On day 4, separate groups of Chow and PN-fed mice were euthanized every 6 h (7 AM, 1 PM, 7 PM, and 1 AM), and ileal, hepatic tissue and serum harvested. From tissue samples, the relative expression of circadian transcription factors and FXR signaling was assessed. Administration of 4-day PN increased hepatic injury, inflammatory cytokine expression, and gut permeability. In the ileum, PN activated FXR and induced expression of Fgf15 and Nr0b2. In the liver, expression of FXR-downstream targets was dysregulated. PN administrations impacted hepatic and ileal circadian transcription factor mRNA expression, which was discordant between the two organs. Dysregulation of circadian regulatory machinery is in part due to discordance of the gut-liver axis during PN. Pharmacological targeting of CR as a therapeutic strategy for PNALD thus deserves further investigation.NEW & NOTEWORTHY This study used a novel short-term model of parenteral nutrition (PN) that is translationally relevant. We find that short-term PN is sufficient to induce hepatic and ileal changes in circadian transcription factor expression and to prevent normal concordant coordination of circadian transcription factors between the ileum and liver. These data suggest that targeting circadian transcription may have some clinical benefit in patients receiving parenteral nutrition.
Asunto(s)
Ácidos y Sales Biliares , Ritmo Circadiano , Íleon , Hígado , Nutrición Parenteral , Animales , Íleon/metabolismo , Hígado/metabolismo , Ratones , Masculino , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Modelos Animales de Enfermedad , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genéticaRESUMEN
BACKGROUND AND AIMS: Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1ß derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS: To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1ß exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS: GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.
Asunto(s)
Colestasis/prevención & control , Expresión Génica/efectos de los fármacos , Isoxazoles/farmacología , Nutrición Parenteral/efectos adversos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Animales , Ácidos y Sales Biliares/sangre , Colestasis/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Interleucina-1beta/farmacología , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/terapia , Isoxazoles/uso terapéutico , Lipoproteínas/genética , Hepatopatías/etiología , Hepatopatías/patología , Hepatopatías/prevención & control , Activación de Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.
Asunto(s)
Colesterol/química , Liposomas/química , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Transporte Vesicular/química , Animales , Sitios de Unión , Línea Celular Tumoral , Colesterol/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
BACKGROUND AND AIMS: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1ß), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC. APPROACH AND RESULTS: In a C57BL/6 PNAC mouse model (dextran sulfate sodium [DSS] pretreatment followed by 14 days of PN; DSS-PN), hepatic nuclear receptor subfamily 5, group A, member 2/LRH-1 mRNA, LRH-1 protein expression, and binding of LRH-1 at the Abcg5/8 and Cyp7a1 promoter was reduced. Interleukin-1 receptor-deficient mice (Il-1r-/- /DSS-PN) were protected from PNAC and had significantly increased hepatic mRNA and protein expression of LRH-1. NF-κB activation and binding to the LRH-1 promoter were increased in DSS-PN PNAC mice and normalized in Il-1r-/- /DSS-PN mice. Knockdown of NF-κB in IL-1ß-exposed HepG2 cells increased expression of LRH-1 and ABCG5. Treatment of HepG2 cells and primary mouse hepatocytes with an LRH-1 inverse agonist, ML179, significantly reduced mRNA expression of FXR targets ATP binding cassette subfamily C member 2/multidrug resistance associated protein 2 (ABCC2/MRP2), nuclear receptor subfamily 0, groupB, member 2/small heterodimer partner (NR0B2/SHP), and ATP binding cassette subfamily B member 11/bile salt export pump (ABCB11/BSEP). Co-incubation with phytosterols further reduced expression of these genes. Similar results were obtained by suppressing the LRH-1 targets ABCG5/8 by treatment with small interfering RNA, IL-1ß, or LXR antagonist GSK2033. Liquid chromatography-mass spectrometry and chromatin immunoprecipitation experiments in HepG2 cells showed that ATP binding cassette subfamily G member 5/8 (ABCG5/8) suppression by GSK2033 increased the accumulation of phytosterols and reduced binding of FXR to the SHP promoter. Finally, treatment with LRH-1 agonist, dilauroyl phosphatidylcholine (DLPC) protected DSS-PN mice from PNAC. CONCLUSIONS: This study suggests that NF-κB regulation of LRH-1 and downstream genes may affect phytosterol-mediated antagonism of FXR signaling in the pathogenesis of PNAC. LRH-1 could be a potential therapeutic target for PNAC.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Colestasis/etiología , Lipoproteínas/metabolismo , FN-kappa B/metabolismo , Nutrición Parenteral/efectos adversos , Fitosteroles/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Colestasis/metabolismo , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Cromatografía de Gases y Espectrometría de Masas , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos C57BLRESUMEN
Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Glutatión Reductasa/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estrés Oxidativo/fisiología , Tiorredoxina Reductasa 1/metabolismo , Animales , Antioxidantes/metabolismo , Daño del ADN/fisiología , Progresión de la Enfermedad , Regulación de la Expresión Génica/fisiología , Glutatión/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Metaboloma/fisiología , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-ReducciónRESUMEN
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.
RESUMEN
Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.
Asunto(s)
Acilación/efectos de los fármacos , Etanol/farmacología , Mitocondrias , Proteoma , Animales , Hepatopatías Alcohólicas/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteoma/química , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismoRESUMEN
Cystathionine ß-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.
Asunto(s)
Aminobutiratos/metabolismo , Homocistinuria/metabolismo , Hígado/metabolismo , Piruvaldehído/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Ácidos Sulfínicos/metabolismo , Taurina/farmacología , Aminoácidos/metabolismo , Animales , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Homocistinuria/tratamiento farmacológico , Homocistinuria/patología , Hígado/efectos de los fármacos , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , gamma-Glutamiltransferasa/metabolismoRESUMEN
BACKGROUND: Glutathione S-transferase A4-4 (GSTA4) is a key enzyme for removal of toxic lipid peroxidation products such as 4-hydroxynonenal (4-HNE). In this study, we examined the potential role of GSTA4 on protein carbonylation and progression of alcoholic liver disease by examining the development of liver injury in male wild-type (WT) SV/J mice and SV/J mice lacking functional GSTA4 (GSTA4-/- mice). METHODS: Adult male WT and GSTA4-/- mice were fed chow (N = 10 to 12) or high-fat Lieber-DeCarli liquid diets containing up to 28% calories as ethanol (EtOH) (N = 18 to 20) for 116 days. At the end of the study, half of the EtOH-fed mice were acutely challenged with an EtOH binge (3 g/kg given intragastrically) 12 hours before sacrifice. Carbonylation of liver proteins was assessed by immunohistochemical staining for 4-HNE adduction and by comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) of purified carbonylated proteins. RESULTS: Chronic EtOH intake significantly increased hepatic 4-HNE adduction and protein carbonylation, including carbonylation of ribosomal proteins. EtOH intake also resulted in steatosis and increased serum alanine aminotransferase. Hepatic infiltration with B cells, T cells, and neutrophils and mRNA expression of pro-inflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)γ was modest in WT mice. However, an EtOH binge increased hepatic necrosis, hepatic cell proliferation, and expression of TNFα mRNA (p < 0.05). EtOH treatment of GSTA4-/- mice increased B-cell infiltration and increased mRNA expression of TNFα and IFNγ and of matrix remodeling markers MMP9, MMP13, and Col1A1 (p < 0.05). GSTA4-/- mice exhibited panlobular rather than periportal distribution of 4-HNE-adducted proteins and increased overall 4-HNE staining after EtOH binge. Comprehensive LC-MS of carbonylated proteins identified 1,022 proteins of which 189 were unique to the GSTA4-/- group. CONCLUSIONS: These data suggest long-term adaptation to EtOH in WT mice does not occur in GSTA4-/- mice. Products of lipid peroxidation appear to play a role in inflammatory responses due to EtOH. And EtOH effects on B-cell infiltration and autoimmune responses may be secondary to formation of carbonyl adducts.
Asunto(s)
Etanol/toxicidad , Glutatión Transferasa/deficiencia , Glutatión Transferasa/genética , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Carbonilación Proteica/fisiología , Animales , Etanol/administración & dosificación , Glutatión Transferasa/química , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Carbonilación Proteica/efectos de los fármacos , Estructura Secundaria de ProteínaRESUMEN
OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a chronic cholestatic liver disease that is characterized by severe peri-biliary tract inflammation and fibrosis, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). The objective of this study was to determine the impact of end stage PSC/IBD on cellular antioxidant responses and the formation of protein carbonylation. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, overall inflammation, oxidative stress, and protein carbonylation were assessed by Western blotting, and immunohistochemistry. RESULTS: Increased immunohistochemical staining for CD3+ (lymphocyte), CD68 (Kupffer cell) and myeloperoxidase (neutrophil) colocalized with the extensive Picrosirius red stained fibrosis confirming the inflammatory aspect of PSC. Importantly, the increased inflammation also colocalized with elevated periportal post-translational modification by the reactive aldehydes 4-HNE, MDA and acrolein. 4-HNE, MDA and acrolein IHC all displayed a significant component in hepatocytes adjacent to fibrotic regions. Furthermore, acrolein was also elevated within the nuclei of periportal inflammatory cells whereas MDA staining was increased in hepatocytes across the lobule. Prussian Blue staining, when compared to the positive controls (ALD, NASH), did not display any evidence of iron accumulation in PSC/IBD livers. Western analysis of PSC/IBD anti-oxidant responses revealed elevated expression of SOD2, GSTπ as well as upregulation of Akt Ser473 phosphorylation. In contrast, expression of GSTµ, GSTA4, catalase, Gpx1 and Hsp70 were suppressed. These data were further supported by a significant decrease in measured GST activity. Dysregulation of anti-oxidant responses in the periportal region of the liver was supported by elevated SOD2 and GSTπ IHC signals in periportal hepatocytes and cholangiocytes. Expression of the Nrf2-regulated proteins HO-1, NAD(P)H quinone reductase (NQO1) and Gpx1 was primarily localized to macrophages. In contrast, catalase staining decreased within periportal hepatocytes and was not evident within cholangiocytes. CONCLUSIONS: Results herein provide additional evidence that cholestasis induces significant increases in periportal oxidative stress and suggest that there are significant differences in the cellular and subcellular generation of reactive aldehydes formed during cholestatic liver injury. Furthermore, these data suggest that anti-oxidant responses are dysregulated during end-stage PSC/IBD supporting pathological data. This work was funded by NIH5R37AA009300-22 D.R.P.
Asunto(s)
Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Adulto , Antioxidantes/metabolismo , Antioxidantes/fisiología , Catalasa/fisiología , Colestasis/fisiopatología , Femenino , Humanos , Inflamación/patología , Hígado/patología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/fisiología , Regulación hacia ArribaRESUMEN
OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a severe cholestatic liver disease characterized by progressive peri-biliary tract inflammation, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). We previously reported dysregulation of key anti-oxidant pathways in PSC/IBD. The objective of this study was to expand previous data by examining the abundance of thioredoxins (Trx) in PSC/IBD. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, the protein abundance of thioredoxin, thioredoxin reductase (TrxR1), and their downstream substrates peroxiredoxins was assessed. RESULTS: Western blot analyses of thioredoxin and peroxiredoxin abundance revealed significant increases in abundance of Trx1 and TrxR1 whereas expression of thioredoxin-interacting protein was significantly decreased in PSC/IBD. Concurrently, abundance of cytosolic peroxiredoxins was not significantly impacted. The abundance of mitochondrial Trx2, along with peroxiredoxins 3, 5 and 6 were significantly decreased by concurrent PSC/IBD. Histological staining of Trx1/TrxR1 revealed elevated nuclear Trx1 and TrxR1 staining within cholangiocytes as well as an overall periportal increase in expression in PSC/IBD. An examination of additional anti-oxidant responses reveal suppression of gamma-glutamylcysteine synthetase and heme oxygenase (HO-1) whereas expression of the protein chaperone glucose regulated protein 78 increased suggesting elevated cellular stress in PSC/IBD. CONCLUSIONS: Results herein suggest that in addition to severe dysregulation of anti-oxidant responses, cholestasis impacts both cytosolic/nuclear (Trx1) as well as mitochondrial (Trx2) redox signaling and control pathways.
Asunto(s)
Colestasis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Peroxirredoxinas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/genética , Estudios de Casos y Controles , Colestasis/complicaciones , Colestasis/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Hígado/metabolismo , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismoRESUMEN
BACKGROUND: Chronic ethanol (EtOH) consumption is a major cause of liver disease worldwide. Oxidative stress is a known consequence of EtOH metabolism and is thought to contribute significantly to alcoholic liver disease (ALD). Therefore, elucidating pathways leading to sustained oxidative stress and downstream redox imbalances may reveal how EtOH consumption leads to ALD. Recent studies suggest that EtOH metabolism impacts mitochondrial antioxidant processes through a number of proteomic alterations, including hyperacetylation of key antioxidant proteins. METHODS: To elucidate mechanisms of EtOH-induced hepatic oxidative stress, we investigate a role for protein hyperacetylation in modulating mitochondrial superoxide dismutase (SOD2) structure and function in a 6-week Lieber-DeCarli murine model of EtOH consumption. Our experimental approach includes immunoblotting immunohistochemistry (IHC), activity assays, mass spectrometry, and in silico modeling. RESULTS: We found that EtOH metabolism significantly increased the acetylation of SOD2 at 2 functionally relevant lysine sites, K68 and K122, resulting in a 40% decrease in enzyme activity while overall SOD2 abundance was unchanged. In vitro studies also reveal which lysine residues are more susceptible to acetylation. IHC analysis demonstrates that SOD2 hyperacetylation occurs near zone 3 within the liver, which is the main EtOH-metabolizing region of the liver. CONCLUSIONS: Overall, the findings presented in this study support a role for EtOH-induced lysine acetylation as an adverse posttranslational modification within the mitochondria that directly impacts SOD2 charge state and activity. Last, the data presented here indicate that protein hyperacetylation may be a major factor contributing to an imbalance in hepatic redox homeostasis due to chronic EtOH metabolism.
Asunto(s)
Etanol/metabolismo , Etanol/toxicidad , Hígado/metabolismo , Lisina/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Acetilación/efectos de los fármacos , Animales , Etanol/administración & dosificación , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Superóxido Dismutasa/antagonistas & inhibidoresRESUMEN
BACKGROUND & AIMS: Oxidative stress is proposed as a central mediator in NAFLD pathogenesis, but the specific trigger for reactive oxygen species generation has not been clearly delineated. In addition, emerging evidence shows that obesity related obstructive sleep apnea (OSA) and nocturnal hypoxia are associated with NAFLD progression in adults. The aim of this study was to determine if OSA/nocturnal hypoxia-induced oxidative stress promotes the progression of pediatric NAFLD. METHODS: Subjects with biopsy proven NAFLD and lean controls were studied. Subjects underwent polysomnograms, liver histology scoring, laboratory testing, urine F(2)-isoprostanes (measure of lipid peroxidation) and 4-hydroxynonenal liver immunohistochemistry (in situ hepatic lipid peroxidation). RESULTS: We studied 36 adolescents with NAFLD and 14 lean controls. The OSA/hypoxia group (69% of NAFLD subjects) had more severe fibrosis (64% stage 0-2; 36% stage 3) than those without OSA/hypoxia (100% stage 0-2), p=0.03. Higher F(2)-isoprostanes correlated with apnea/hypoxia index (r=0.39, p=0.03), % time SaO2 <90% (r=0.56, p=0.0008) and inversely with SaO2 nadir (r=-0.46, p=0.008). OSA/hypoxia was most severe in subjects with the greatest 4HNE staining (p=0.03). Increasing F(2)-isoprostanes(r=0.32, p=0.04) and 4HNE hepatic staining (r=0.47, p=0.007) were associated with worsening steatosis. Greater oxidative stress occurred in subjects with definite NASH as measured by F(2)-isoprostanes (p=0.06) and hepatic 4HNE (p=0.03) compared to those with borderline/not NASH. CONCLUSIONS: These data support the role of nocturnal hypoxia as a trigger for localized hepatic oxidative stress, an important factor associated with the progression of NASH and hepatic fibrosis in obese pediatric patients. LAY SUMMARY: Obstructive sleep apnea and low nighttime oxygen are associated with NAFLD progression in adults. In this study, we show that adolescents with NAFLD who have OSA and low oxygen have significant scar tissue in their livers. NAFLD subjects affected by OSA and low oxygen have a greater imbalance between the production of free radicals and their body's ability to counteract their harmful effects than subjects without OSA and low oxygen. This study shows that low oxygen levels may be an important trigger in the progression of pediatric NASH.
Asunto(s)
Estrés Oxidativo , Adolescente , Aldehídos , Niño , F2-Isoprostanos , Humanos , Hipoxia , Hígado , Enfermedad del Hígado Graso no AlcohólicoRESUMEN
The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered ß-oxidation in hepatocytes. A major regulator of ß-oxidation is 5' AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/ß, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys(130), Cys(174), Cys(227), and Cys(304) on recombinant AMPKα and Cys(225) on recombinant AMPKß. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered ß-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aldehídos/metabolismo , Etanol/farmacología , Hígado Graso/enzimología , Hepatopatías Alcohólicas/enzimología , Proteínas Quinasas Activadas por AMP/química , Aldehídos/farmacología , Animales , Depresores del Sistema Nervioso Central/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Químicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Carbonilación Proteica/efectos de los fármacos , Carbonilación Proteica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4-4-null (GSTA4-/-) mice for 40 days. GSTA4-/- mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α-/-), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice (P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4-/- compared with EtOH WT mice (P < 0.05). EtOH PPAR-α-/- mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-ß, platelet-derived growth factor receptor-ß (PDGFR-ß), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4-/-, PPAR-α-/-, and WT mice (P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups (P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4-/- or EtOH PPAR-α-/- genotype (P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.
Asunto(s)
Aldehídos/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Hepatopatías Alcohólicas/metabolismo , PPAR alfa/metabolismo , Actinas/genética , Actinas/metabolismo , Alanina Transaminasa/sangre , Aldehídos/inmunología , Animales , Anticuerpos/sangre , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis/metabolismo , Eliminación de Gen , Glutatión Transferasa/genética , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/inmunología , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , PPAR alfa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a phosphatidylinositol (PtdIns) phosphatase that regulates Akt activation via PtdIns 3 kinase. Changes in PTEN expression and/or activity have been identified in a variety of chronic hepatocellular disorders including obesity, NAFLD, NASH, and alcoholism. In cancer biology, PTEN is frequently mutated or deleted in a wide variety of tumors. Mutations, decreased promoter activity, and decreased expression in PTEN are frequently identified in patients with hepatocellular carcinoma. While the majority of research on PTEN concerns obesity and NASH, PTEN clearly has a role in hepatic insulin sensitivity and in the development of steatosis during chronic alcoholism. Yet, in chronic alcoholics and HCC, very little is known concerning PTEN mutation/deletion or low PTEN expression. This review is focused on an overview of the current knowledge on molecular mechanisms of dysregulation of PTEN expression/activity in the liver and their relationship to development of ethanol-induced hepatocellular damage and cancer.
Asunto(s)
Alcoholismo/complicaciones , Carcinoma Hepatocelular/inducido químicamente , Hepatopatías Alcohólicas/etiología , Neoplasias Hepáticas/inducido químicamente , Fosfohidrolasa PTEN/fisiología , Animales , Humanos , Hígado/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP(-/-) mice were fed a modified Lieber-DeCarli liquid diet for six weeks. To assess the response to chronic ethanol ingestion, standard biochemical indicators for alcoholic liver disease (ALD) and oxidative stress were measured. Ethanol ingestion resulted in attenuation of hepatic triglyceride accumulation and elevation of cholesterol in L-FABP(-/-) mice. Lipidomics analysis validated multiple alterations in hepatic lipids resulting from ethanol treatment. Increased immunohistochemical staining for the reactive aldehydes 4-hydroxynonenal and malondialdehyde were observed in WT mice ingesting ethanol; however, L-FABP(-/-) mice displayed prominent protein adducts in liver sections evaluated from pair-fed and ethanol-fed mice. Likewise, alterations in glutathione, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes, and protein carbonyl content all indicated L-FABP(-/-) mice exhibit high sustained oxidative stress in the liver. These data establish that L-FABP is an indirect antioxidant protein essential for sequestering FFA and that its impairment could contribute to in the pathogenesis of ALD.
Asunto(s)
Etanol/toxicidad , Proteínas de Unión a Ácidos Grasos/metabolismo , Hepatopatías Alcohólicas/genética , Estrés Oxidativo/efectos de los fármacos , Animales , Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Lípidos/análisis , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo/genéticaRESUMEN
BACKGROUND: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2). The aim of this study was to examine the effects of PN on expression of hepatic circadian rhythm (CR) regulatory genes in mice. METHODS: WT, IL1KO or TNFRKO mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN) and the expression of key CR regulatory transcription factors evaluated. Animals were NPO on a 14 hr light-dark cycle and were administered PN continuously over 24 hrs. Mice were sacrificed, and hepatic tissue obtained at 9-10AM (Zeitgeber Z+3/Z+4 hrs). PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and total bilirubin and the effect of i.p. injection of recombinant IL-1ß (200ng/mouse) or TNFα (200ng/mouse) on CR expression was examined after 4 hrs. RESULTS: In the PNAC model, DSS-PN increased serum biomarkers of hepatic injury (ALT, AST, serum bile acids) which was suppressed in both DSS-PN IL1KO and DSS-PN TNFRKO mice. In WT DSS-PN, mRNA expression of Arntl and Dec1 was suppressed corresponding to increased Nr1d1, Per2, Dbp and Dec2. These effects were ameliorated in both DSS-PN IL1KO and DSS-PN TNFRKO groups. Western analysis of the circadian transcription factor network revealed in WT mice DSS-PN significantly suppressed Reverbα, Bmal, Dbp, Per2 and Mtnr1b. With the exception of Dbp, DSS-PN mediated suppression was ameliorated by both IL1KO and TNFRKO. Intraperitoneal injection of IL-1ß or TNFα into WT mice increased serum AST and ALT and suppressed mRNA expression of Nr1d1, Arntl and Clock and increased Dbp and Per2. CONCLUSIONS: Altered expression of CR-dependent regulatory genes during PNAC accompanies cholestasis and is, in part, due to increased cytokine (IL-1ß and TNFα) production. Evaluation of the effects of modulating CR in PNAC thus deserves further investigation.
Asunto(s)
Traumatismos Abdominales , Colestasis , Animales , Ratones , Factor de Necrosis Tumoral alfa , Factores de Transcripción ARNTL , Genes Reguladores , Colestasis/genética , Nutrición Parenteral , Ácidos y Sales Biliares , ARN MensajeroRESUMEN
BACKGROUND AND AIMS: Cholestatic liver diseases, including primary sclerosing cholangitis, are characterized by periportal inflammation with progression to hepatic fibrosis and ultimately cirrhosis. We recently reported that the thioredoxin antioxidant response is dysregulated during primary sclerosing cholangitis. The objective of this study was to examine the impact of genetic and pharmacological targeting of thioredoxin reductase 1 (TrxR1) on hepatic inflammation and liver injury during acute cholestatic injury. APPROACH AND RESULTS: Primary mouse hepatocytes and intrahepatic macrophages were isolated from 3-day bile duct ligated (BDL) mice and controls. Using wildtype and mice with a liver-specific deletion of TrxR1 (TrxR1LKO), we analyzed the effect of inhibition or ablation of TrxR1 signaling on liver injury and inflammation. Immunohistochemical analysis of livers from BDL mice and human cholestatic patients revealed increased TrxR1 staining in periportal macrophages and hepatocytes surrounding fibrosis. qPCR analysis of primary hepatocytes and intrahepatic macrophages revealed increased TrxR1 mRNA expression following BDL. Compared with sham controls, BDL mice exhibited increased inflammation, necrosis, and increased mRNA expression of pro-inflammatory cytokines, fibrogenesis, the NLRP3 inflammatory complex, and increased activation of NFkB, all of which were ameliorated in TrxR1LKO mice. Importantly, following BDL, TrxR1LKO induced periportal hepatocyte expression of Nrf2-dependent antioxidant proteins and increased mRNA expression of basolateral bile acid transporters with reduced expression of bile acid synthesis genes. In the acute BDL model, the TrxR1 inhibitor auranofin (10 mg/kg/1 d preincubation, 3 d BDL) ameliorated BDL-dependent increases in Nlrp3, GsdmD, Il1ß, and TNFα mRNA expression despite increasing serum alanine aminotransferase, aspartate aminotransferase, bile acids, and bilirubin. CONCLUSIONS: These data implicate TrxR1-signaling as an important regulator of inflammation and bile acid homeostasis in cholestatic liver injury.
Asunto(s)
Colangitis Esclerosante , Colestasis , Animales , Humanos , Ratones , Antioxidantes , Ácidos y Sales Biliares , Inflamación , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Activación de Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Mensajero , Tiorredoxina Reductasa 1/genéticaRESUMEN
Reduced glutathione (GSH) is an abundant antioxidant that regulates intracellular redox homeostasis by scavenging reactive oxygen species (ROS). Glutamate-cysteine ligase catalytic (GCLC) subunit is the rate-limiting step in GSH biosynthesis. Using the Pax6-Cre driver mouse line, we deleted expression of the Gclc gene in all pancreatic endocrine progenitor cells. Intriguingly, Gclc knockout (KO) mice, following weaning, exhibited an age-related, progressive diabetes phenotype, manifested as strikingly increased blood glucose and decreased plasma insulin levels. This severe diabetes trait is preceded by pathologic changes in islet of weanling mice. Gclc KO weanlings showed progressive abnormalities in pancreatic morphology including: islet-specific cellular vacuolization, decreased islet-cell mass, and alterations in islet hormone expression. Islets from newly-weaned mice displayed impaired glucose-stimulated insulin secretion, decreased insulin hormone gene expression, oxidative stress, and increased markers of cellular senescence. Our results suggest that GSH biosynthesis is essential for normal development of the mouse pancreatic islet, and that protection from oxidative stress-induced cellular senescence might prevent abnormal islet-cell damage during embryogenesis.