Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 146(4): 645-58, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854988

RESUMEN

The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).


Asunto(s)
Perfilación de la Expresión Génica , Mitocondrias/genética , ARN/análisis , Núcleo Celular/metabolismo , Huella de ADN , Proteínas de Unión al ADN/análisis , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Región de Control de Posición , Proteínas Mitocondriales/análisis , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Mitocondrial , Análisis de Secuencia de ARN
2.
EMBO J ; 38(24): e102155, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31721250

RESUMEN

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , Biogénesis de Organelos , Transducción de Señal , Animales , Ciclo del Ácido Cítrico/fisiología , Escherichia coli/metabolismo , Femenino , Metabolómica , Ratones , Ratones Transgénicos , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30126926

RESUMEN

The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs, and miRNAs identified the molecular targets of ELAC2 in vivo We show that ELAC2 is required for processing of tRNAs and for the balanced maintenance of C/D box snoRNAs, miRNAs, and a new class of tRNA fragments. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis and the assembly of mitochondrial ribosomes and cytoplasmic polysomes. We show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3' tRNA processing is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.


Asunto(s)
Endorribonucleasas/genética , Proteínas de Neoplasias/genética , ARN Mitocondrial/genética , ARN no Traducido/genética , Animales , Núcleo Celular/genética , Perfilación de la Expresión Génica , Ratones , MicroARNs/genética , ARN Nucleolar Pequeño/genética , ARN de Transferencia/genética , ARN no Traducido/clasificación , ARN no Traducido/aislamiento & purificación
4.
Nucleic Acids Res ; 45(9): 5487-5500, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28201688

RESUMEN

Mammalian mitochondrial RNAs are unique as they are derived from primary transcripts that encompass almost the entire mitochondrial genome. This necessitates extensive processing to release the individual mRNAs, rRNAs and tRNAs required for gene expression. Recent studies have revealed many of the proteins required for mitochondrial RNA processing, however the rapid turnover of precursor RNAs has made it impossible to analyze their composition and the hierarchy of processing. Here, we find that circularization of RNA prior to deep sequencing enables the discovery and characterization of unprocessed RNAs. Using this approach, we identify the most stable processing intermediates and the presence of intermediate processing products that are partially degraded and polyadenylated. Analysis of libraries constructed using RNA from mice lacking the nuclease subunit of the mitochondrial RNase P reveals the identities of stalled processing intermediates, their order of cleavage, and confirms the importance of RNase P in generating mature mitochondrial RNAs. Using RNA circularization prior to library preparation should provide a generally useful approach to studying RNA processing in many different biological systems.


Asunto(s)
Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Biología Computacional , Ratones Endogámicos C57BL , Ratones Transgénicos , Poliadenilación , ARN/genética , ARN Circular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Ribonucleasa P/metabolismo
5.
Hum Mol Genet ; 25(19): 4302-4314, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506977

RESUMEN

RNA polymerase III is essential for the transcription of non-coding RNAs, including tRNAs. Mutations in the genes encoding its largest subunits are known to cause hypomyelinating leukodystrophies (HLD7) with pathogenetic mechanisms hypothesised to involve impaired availability of tRNAs. We have identified a founder mutation in the POLR3A gene that leads to aberrant splicing, a premature termination codon and partial deficiency of the canonical full-length transcript. Our clinical and imaging data showed no evidence of the previously reported white matter or cerebellar involvement; instead the affected brain structures included the striatum and red nuclei with the ensuing clinical manifestations. Our transcriptome-wide investigations revealed an overall decrease in the levels of Pol III-transcribed tRNAs and an imbalance in the levels of regulatory ncRNAs such as small nuclear and nucleolar RNAs (snRNAs and snoRNAs). In addition, the Pol III mutation was found to exert complex downstream effects on the Pol II transcriptome, affecting the general regulation of RNA metabolism.


Asunto(s)
Cuerpo Estriado/patología , Degeneración Nerviosa/congénito , ARN Polimerasa III/genética , Transcripción Genética , Transcriptoma/genética , Adulto , Cerebelo/metabolismo , Cerebelo/patología , Niño , Cuerpo Estriado/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neostriado/metabolismo , Neostriado/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Fenotipo , Empalme del ARN/genética , ARN de Transferencia/genética
6.
PLoS Genet ; 11(3): e1005089, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25816300

RESUMEN

The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.


Asunto(s)
Cardiopatías Congénitas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/biosíntesis , Animales , ADN Mitocondrial/genética , Metabolismo Energético , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Humanos , Hepatopatías/genética , Hepatopatías/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Ribosomas Mitocondriales/patología , Mutación , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 42(9): 5483-94, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598254

RESUMEN

Mitochondrial gene expression is predominantly regulated at the post-transcriptional level and mitochondrial ribonucleic acid (RNA)-binding proteins play a key role in RNA metabolism and protein synthesis. The AU-binding homolog of enoyl-coenzyme A (CoA) hydratase (AUH) is a bifunctional protein with RNA-binding activity and a role in leucine catabolism. AUH has a mitochondrial targeting sequence, however, its role in mitochondrial function has not been investigated. Here, we found that AUH localizes to the inner mitochondrial membrane and matrix where it associates with mitochondrial ribosomes and regulates protein synthesis. Decrease or overexpression of the AUH protein in cells causes defects in mitochondrial translation that lead to changes in mitochondrial morphology, decreased mitochondrial RNA stability, biogenesis and respiratory function. Because of its role in leucine metabolism, we investigated the importance of the catalytic activity of AUH and found that it affects the regulation of mitochondrial translation and biogenesis in response to leucine.


Asunto(s)
Enoil-CoA Hidratasa/fisiología , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Leucina/fisiología , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Membranas Mitocondriales/enzimología , Forma de los Orgánulos , Multimerización de Proteína , Transporte de Proteínas , ARN/genética , ARN/metabolismo , Estabilidad del ARN , ARN Mitocondrial , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
8.
Mol Genet Metab ; 113(1-2): 76-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25087164

RESUMEN

Investigation of 31 of Roma patients with congenital lactic acidosis (CLA) from Bulgaria identified homozygosity for the R446* mutation in the PDHX gene as the most common cause of the disorder in this ethnic group. It accounted for around 60% of patients in the study and over 25% of all CLA cases referred to the National Genetic Laboratory in Bulgaria. The detection of a homozygous patient from Hungary and carriers among population controls from Romania and Slovakia suggests a wide spread of the mutation in the European Roma population. The clinical phenotype of the twenty R446* homozygotes was relatively homogeneous, with lactic acidosis crisis in the first days or months of life as the most common initial presentation (15/20 patients) and delayed psychomotor development and/or seizures in infancy as the leading manifestations in a smaller group (5/20 patients). The subsequent clinical picture was dominated by impaired physical growth and a very consistent pattern of static cerebral palsy-like encephalopathy with spasticity and severe to profound mental retardation seen in over 80% of cases. Most patients had a positive family history. We propose testing for the R446* mutation in PDHX as a rapid first screening in Roma infants with metabolic acidosis. It will facilitate and accelerate diagnosis in a large proportion of cases, allow early rehabilitation to alleviate the chronic clinical course, and prevent further affected births in high-risk families.


Asunto(s)
Acidosis Láctica/genética , Efecto Fundador , Mutación , Complejo Piruvato Deshidrogenasa/genética , Acidosis Láctica/diagnóstico , Adolescente , Niño , Preescolar , Codón , Consanguinidad , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Rumanía , Eslovaquia
9.
RNA ; 17(12): 2085-93, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22028365

RESUMEN

Human mitochondrial long noncoding RNAs (lncRNAs) have not been described to date. By analysis of deep-sequencing data we have identified three lncRNAs generated from the mitochondrial genome and confirmed their expression by Northern blotting and strand-specific qRT-PCR. We show that the abundance of these lncRNAs is comparable to their complementary mRNAs and that nuclear-encoded mitochondrial proteins involved in RNA processing regulate their expression. We also identify the 5' and 3' transcript ends of the three lncRNAs and show that mitochondrial RNase P protein 1 (MRPP1) is important for the processing of these transcripts. Finally, we show that mitochondrial lncRNAs form intermolecular duplexes and that their abundance is cell- and tissue-specific, suggesting a functional role in the regulation of mitochondrial gene expression.


Asunto(s)
Genoma Mitocondrial , Proteínas Mitocondriales/metabolismo , ARN no Traducido/metabolismo , Ribonucleasa P/metabolismo , Secuencia de Bases , Núcleo Celular/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Especificidad de Órganos/genética , Estabilidad del ARN , ARN no Traducido/genética , Ribonucleasa P/genética
10.
Nucleic Acids Res ; 37(17): 5859-67, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19651879

RESUMEN

Although the basic components and mechanisms of mitochondrial transcription in mammals have been described, the components involved in mRNA processing, translation and stability remain largely unknown. In plants, pentatricopeptide domain RNA-binding proteins regulate the stability, expression and translation of mitochondrial transcripts; therefore, we investigated the role of an uncharacterized mammalian pentatricopeptide domain protein, (PTCD1), in mitochondrial RNA metabolism. We show that PTCD1 is a mitochondrial matrix protein which associates with leucine tRNAs and precursor RNAs that contain leucine tRNAs. Knockdown of PTCD1 in 143B osteosarcoma cells did not change mitochondrial mRNA levels; however, it increased the abundance precursor RNAs and of leucine tRNAs and PTCD1 overexpression led to a reduction of these RNAs. Lowering PTCD1 in cells increased levels of several mitochondria-encoded proteins and Complex IV activity, suggesting that PTCD1 acts as a negative regulator of leucine tRNA levels and hence mitochondrial translation.


Asunto(s)
Proteínas Mitocondriales/metabolismo , ARN de Transferencia de Leucina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Línea Celular Tumoral , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/química , Estructura Terciaria de Proteína , ARN Mitocondrial , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química
11.
Sci Adv ; 5(12): eaay2118, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31903419

RESUMEN

Mammalian mitochondrial ribosomes are unique molecular machines that translate 11 leaderless mRNAs; however, it is not clear how mitoribosomes initiate translation, since mitochondrial mRNAs lack untranslated regions. Mitochondrial translation initiation shares similarities with prokaryotes, such as the formation of a ternary complex of fMet-tRNAMet, mRNA and the 28S subunit, but differs in the requirements for initiation factors. Mitochondria have two initiation factors: MTIF2, which closes the decoding center and stabilizes the binding of the fMet-tRNAMet to the leaderless mRNAs, and MTIF3, whose role is not clear. We show that MTIF3 is essential for survival and that heart- and skeletal muscle-specific loss of MTIF3 causes cardiomyopathy. We identify increased but uncoordinated mitochondrial protein synthesis in mice lacking MTIF3, resulting in loss of specific respiratory complexes. Ribosome profiling shows that MTIF3 is required for recognition and regulation of translation initiation of mitochondrial mRNAs and for coordinated assembly of OXPHOS complexes in vivo.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas/fisiología , Animales , Cardiomiopatía Dilatada/genética , Factor 3 de Iniciación Eucariótica/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
12.
Neurol Genet ; 4(5): e276, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30338296

RESUMEN

OBJECTIVE: Our goal was to identify the gene(s) associated with an early-onset form of Parkinson disease (PD) and the molecular defects associated with this mutation. METHODS: We combined whole-exome sequencing and functional genomics to identify the genes associated with early-onset PD. We used fluorescence microscopy, cell, and mitochondrial biology measurements to identify the molecular defects resulting from the identified mutation. RESULTS: Here, we report an association of a homozygous variant in CHCHD2, encoding coiled-coil-helix-coiled-coil-helix domain containing protein 2, a mitochondrial protein of unknown function, with an early-onset form of PD in a 26-year-old Caucasian woman. The CHCHD2 mutation in PD patient fibroblasts causes fragmentation of the mitochondrial reticular morphology and results in reduced oxidative phosphorylation at complex I and complex IV. Although patient cells could maintain a proton motive force, reactive oxygen species production was increased, which correlated with an increased metabolic rate. CONCLUSIONS: Our findings implicate CHCHD2 in the pathogenesis of recessive early-onset PD, expanding the repertoire of mitochondrial proteins that play a direct role in this disease.

13.
Int J Biochem Cell Biol ; 85: 106-113, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189843

RESUMEN

The expression of mitochondrially-encoded genes requires the efficient processing of long precursor RNAs at the 5' and 3' ends of tRNAs, a process which, when disrupted, results in disease. Two such mutations reside within mt-tRNALeu(UUR); a m.3243A>G transition, which is the most common cause of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), and m.3302A>G which often causes mitochondrial myopathy (MM). We used parallel analysis of RNA ends (PARE) that captures the 5' terminal end of 5'-monophosphorylated mitochondrial RNAs to compare the effects of the m.3243A>G and m.3302A>G mutations on mitochondrial tRNA processing and downstream RNA metabolism. We confirmed previously identified RNA processing defects, identified common internal cleavage sites and new sites unique to the m.3243A>G mutants that do not correspond to transcript ends. These sites occur in regions of predicted RNA secondary structure, or are in close proximity to such regions, and may identify regions of importance to the processing of mtRNAs.


Asunto(s)
Enfermedades Mitocondriales/genética , ARN/genética , ARN/metabolismo , Células Cultivadas , Humanos , Mutación , Procesamiento Postranscripcional del ARN/genética , ARN Mitocondrial , Análisis de Secuencia de ARN
14.
Nat Commun ; 8(1): 1532, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146908

RESUMEN

The expression of the compact mammalian mitochondrial genome requires transcription, RNA processing, translation and RNA decay, much like the more complex chromosomal systems, and here we use it as a model system to understand the fundamental aspects of gene expression. Here we combine RNase footprinting with PAR-CLIP at unprecedented depth to reveal the importance of RNA-protein interactions in dictating RNA folding within the mitochondrial transcriptome. We show that LRPPRC, in complex with its protein partner SLIRP, binds throughout the mitochondrial transcriptome, with a preference for mRNAs, and its loss affects the entire secondary structure and stability of the transcriptome. We demonstrate that the LRPPRC-SLIRP complex is a global RNA chaperone that stabilizes RNA structures to expose the required sites for translation, stabilization, and polyadenylation. Our findings reveal a general mechanism where extensive RNA-protein interactions ensure that RNA is accessible for its biological functions.


Asunto(s)
Mitocondrias/fisiología , Proteínas de Neoplasias/fisiología , Pliegue del ARN/fisiología , Proteínas de Unión al ARN/fisiología , Transcriptoma/fisiología , Animales , Sitios de Unión , Fibroblastos , Genoma Mitocondrial/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/fisiología , Poliadenilación/fisiología , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología , Huella de Proteína/métodos , Estabilidad del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ARN/métodos
15.
Sci Adv ; 3(8): e1700677, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28835921

RESUMEN

Mitochondrial gene expression is essential for energy production; however, an understanding of how it can influence physiology and metabolism is lacking. Several proteins from the pentatricopeptide repeat (PPR) family are essential for the regulation of mitochondrial gene expression, but the functions of the remaining members of this family are poorly understood. We created knockout mice to investigate the role of the PPR domain 1 (PTCD1) protein and show that loss of PTCD1 is embryonic lethal, whereas haploinsufficient, heterozygous mice develop age-induced obesity. The molecular defects and metabolic consequences of mitochondrial protein haploinsufficiency in vivo have not been investigated previously. We show that PTCD1 haploinsufficiency results in increased RNA metabolism, in response to decreased protein synthesis and impaired RNA processing that affect the biogenesis of the respiratory chain, causing mild uncoupling and changes in mitochondrial morphology. We demonstrate that with age, these effects lead to adult-onset obesity that results in liver steatosis and cardiac hypertrophy in response to tissue-specific differential regulation of the mammalian target of rapamycin pathways. Our findings indicate that changes in mitochondrial gene expression have long-term consequences on energy metabolism, providing evidence that haploinsufficiency of PTCD1 can be a major predisposing factor for the development of metabolic syndrome.


Asunto(s)
Regulación de la Expresión Génica , Genes Mitocondriales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Genotipo , Intolerancia a la Glucosa , Hormonas/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Obesidad/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
16.
Cell Rep ; 16(7): 1874-90, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27498866

RESUMEN

The regulation of mitochondrial RNA processing and its importance for ribosome biogenesis and energy metabolism are not clear. We generated conditional knockout mice of the endoribonuclease component of the RNase P complex, MRPP3, and report that it is essential for life and that heart and skeletal-muscle-specific knockout leads to severe cardiomyopathy, indicating that its activity is non-redundant. Transcriptome-wide parallel analyses of RNA ends (PARE) and RNA-seq enabled us to identify that in vivo 5' tRNA cleavage precedes 3' tRNA processing, and this is required for the correct biogenesis of the mitochondrial ribosomal subunits. We identify that mitoribosomal biogenesis proceeds co-transcriptionally because large mitoribosomal proteins can form a subcomplex on an unprocessed RNA containing the 16S rRNA. Taken together, our data show that RNA processing links transcription to translation via assembly of the mitoribosome.


Asunto(s)
Cardiomiopatías/genética , Ribosomas Mitocondriales/metabolismo , Biogénesis de Organelos , Procesamiento Postranscripcional del ARN , Ribonucleasa P/genética , Proteínas Ribosómicas/genética , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Fraccionamiento Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético , Miocardio/metabolismo , Miocardio/patología , Biosíntesis de Proteínas , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasa P/deficiencia , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Transcriptoma
17.
Mol Endocrinol ; 29(1): 14-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25375021

RESUMEN

Estrogens, in particular 17ß-estradiol, are well-known regulators of essential cellular functions; however, discrepancies remain over the mechanisms by which they act on mitochondria. Here we propose a novel mechanism for the direct regulation of mitochondrial gene expression by estrogen under metabolic stress. We show that in serum-depleted medium, estrogen stimulates a rapid relocation of estrogen receptor-α to mitochondria, in which it elicits a cellular response, resulting in an increase in mitochondrial RNA abundance. Mitochondrial RNA levels are regulated through the association of estrogen receptor-α with 17ß-hydroxysteroid dehydrogenase 10, a multifunctional protein involved in steroid metabolism that is also a core subunit of the mitochondrial ribonuclease P complex responsible for the cleavage of mitochondrial polycistronic transcripts. Processing of mitochondrial transcripts affects mitochondrial gene expression by controlling the levels of mature RNAs available for translation. This work provides the first mechanism linking RNA processing and estrogen activation in mitochondrial gene expression and underscores the coordinated response between the nucleus and mitochondria in response to stress.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Regulación de la Expresión Génica/genética , Mitocondrias/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/biosíntesis , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Línea Celular Tumoral , Estradiol/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Genes Mitocondriales/genética , Humanos , Células MCF-7 , Mitocondrias/enzimología , Mitocondrias/genética , Interferencia de ARN , ARN Interferente Pequeño
18.
Mitochondrion ; 25: 113-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26524491

RESUMEN

Leigh syndrome (LS) is a progressive mitochondrial neurodegenerative disorder, whose symptoms most commonly include psychomotor delay with regression, lactic acidosis and a failure to thrive. Here we describe three siblings with LS, but with additional manifestations including hypertrophic cardiomyopathy, hepatosplenomegaly, cholestatic hepatitis, and seizures. All three affected siblings were found to be homoplasmic for an m. 5559A>G mutation in the T stem of the mitochondrial DNA-encoded MT-TW by next generation sequencing. The m.5559A>G mutation causes a reduction in the steady state levels of tRNA(Trp) and this decrease likely affects the stability of other mitochondrial RNAs in the patient fibroblasts. We observe accumulation of an unprocessed transcript containing tRNA(Trp), decreased de novo protein synthesis and consequently lowered steady state levels of mitochondrial DNA-encoded proteins that compromise mitochondrial respiration. Our results show that the m.5559A>G mutation at homoplasmic levels causes LS in association with severe multi-organ disease (LS-plus) as a consequence of dysfunctional mitochondrial RNA metabolism.


Asunto(s)
Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Células Cultivadas , Niño , Preescolar , Salud de la Familia , Femenino , Fibroblastos/fisiología , Humanos , Lactante , Recién Nacido , Masculino , Mutación Puntual , Hermanos
19.
Cell Rep ; 5(3): 839-48, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24183674

RESUMEN

Human mitochondrial DNA is transcribed as long polycistronic transcripts that encompass each strand of the genome and are processed subsequently into mature mRNAs, tRNAs, and rRNAs, necessitating widespread posttranscriptional regulation. Here, we establish methods for massively parallel sequencing and analyses of RNase-accessible regions of human mitochondrial RNA and thereby identify specific regions within mitochondrial transcripts that are bound by proteins. This approach provides a range of insights into the contribution of RNA-binding proteins to the regulation of mitochondrial gene expression.


Asunto(s)
Huella de Proteína/métodos , ARN/metabolismo , Ribonucleasas/metabolismo , Regulación de la Expresión Génica , Humanos , ARN/genética , ARN Mitocondrial , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasas/genética , Transcripción Genética
20.
FEBS Lett ; 586(20): 3555-61, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22841715

RESUMEN

Mammalian pentatricopeptide repeat domain (PPR) proteins are involved in regulation of mitochondrial RNA metabolism and translation and are required for mitochondrial function. We investigated an uncharacterised PPR protein, the supernumerary mitochondrial ribosomal protein of the small subunit 27 (MRPS27), and show that it associates with the 12S rRNA and tRNA(Glu), however it does not affect their abundance. We found that MRPS27 is not required for mitochondrial RNA processing or the stability of the small ribosomal subunit. However, MRPS27 is required for mitochondrial protein synthesis and its knockdown causes decreased abundance in respiratory complexes and cytochrome c oxidase activity.


Asunto(s)
Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Secuencias Repetitivas de Aminoácido , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Línea Celular Tumoral , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas/enzimología , Subunidades Ribosómicas Pequeñas/genética , Subunidades Ribosómicas Pequeñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA