RESUMEN
Hypoxia is a hallmark of inflammatory conditions (e.g., inflammatory bowel disease [IBD]), and adaptive responses have consequently evolved to protect against hypoxia-associated tissue injury. Because augmenting hypoxia-induced protective responses is a promising therapeutic approach for IBD, a more complete understanding of these pathways is needed. Recent work has demonstrated that the histone demethylase UTX is oxygen-sensitive, but its role in IBD is unclear. In this study, we show that hypoxia-induced deactivation of UTX downregulates T cell responses in mucosal inflammation. Hypoxia results in decreased T cell proinflammatory cytokine production and increased immunosuppressive regulatory T cells, and these findings are recapitulated by UTX deficiency. Hypoxia leads to T cell accumulation of H3K27me3 histone modifications, suggesting that hypoxia impairs UTX's histone demethylase activity to dampen T cell colitogenic activity. Finally, T cell-specific UTX deletion ameliorates colonic inflammation in an IBD mouse model, implicating UTX's oxygen-sensitive demethylase activity in counteracting hypoxic inflammation.
Asunto(s)
Linfocitos T CD4-Positivos , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Histona Demetilasas/metabolismo , Oxígeno , Hipoxia , InflamaciónRESUMEN
Network inference is used to model transcriptional, signaling, and metabolic interactions among genes, proteins, and metabolites that identify biological pathways influencing disease pathogenesis. Advances in machine learning (ML)-based inference models exhibit the predictive capabilities of capturing latent patterns in genomic data. Such models are emerging as an alternative to the statistical models identifying causative factors driving complex diseases. We present CoVar, an ML-based framework that builds upon the properties of existing inference models, to find the central genes driving perturbed gene expression across biological states. Unlike differentially expressed genes (DEGs) that capture changes in individual gene expression across conditions, CoVar focuses on identifying variational genes that undergo changes in their expression network interaction profiles, providing insights into changes in the regulatory dynamics, such as in disease pathogenesis. Subsequently, it finds core genes from among the nearest neighbors of these variational genes, which are central to the variational activity and influence the coordinated regulatory processes underlying the observed changes in gene expression. Through the analysis of simulated as well as yeast expression data perturbed by the deletion of the mitochondrial genome, we show that CoVar captures the intrinsic variationality and modularity in the expression data, identifying key driver genes not found through existing differential analysis methodologies.
Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Aprendizaje Automático , Redes Reguladoras de Genes/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Algoritmos , Regulación de la Expresión Génica/genética , Simulación por ComputadorRESUMEN
BACKGROUND: Crohn's disease (CD) is a chronic inflammatory condition affecting the gastrointestinal tract, characterized by complications such as strictures, fistulas, and neoplasia. Despite medical advancements, a significant number of patients with Crohn's disease require surgery, and many experience post-operative complications and recurrence. Previous studies have analyzed gene expression to study recurrence and post-operative complications independently. This study aims to identify overlapping differentially expressed genes and pathways for recurrence and post-operative complications. METHODS: A dataset including 45 patients with Crohn's disease, including gene expression from ileum and colon tissue, endoscopic recurrence, and intra-abdominal septic complications was analyzed. Gene set enrichment analysis was used to identify gene pathways associated with the outcomes. Finally, a multi-variable logistic regression model was created to assess whether gene pathways were independently associated with both outcomes. RESULTS: In ileum tissue, several inflammatory pathways, including interferon alpha and gamma response were upregulated in patients with endoscopic recurrence and intra-abdominal septic complications. In addition, there was upregulation of the epithelial mesenchymal transition pathway. In colon tissue, metabolic processes, such as myogenesis and oxidative phosphorylation were downregulated in both outcomes. In a multivariate model, downregulation of myogenesis in colon tissue was significantly associated with both endoscopic recurrence and intra-abdominal septic complications. CONCLUSION: These findings shed light on the underlying biology of these outcomes and suggest potential biomarkers or therapeutic targets to reduce their occurrence. Further validation and multi-institutional studies are warranted to confirm these results and improve post-operative outcomes for patients with Crohn's disease.
RESUMEN
The goal of this project was to validate the functional relevance and utility of mucus produced by an in vitro intestinal cell culture model. This is facilitated by the need to physiologically replicate both healthy and abnormal mucus conditions from native intestinal tissue, where mucus properties have been connected to intestinal disease models. Mucus harvested from colonic cell cultures derived from healthy donors was compared to mucus collected from surgically resected, noninflamed transverse colon tissue. The rheological and biochemical properties of these mucus samples were compared using oscillational rheometry, particle-tracking microrheology, multiangle laser light scattering, refractometry, and immunohistochemical imaging. An air-liquid interface culture of primary human colonic epithelial cells generated a continuous monolayer with an attached mucus layer that displayed increasing weight percent (wt%) of solids over 1 week (1.3 ± 0.5% at 2 days vs. 2.4 ± 0.3% at 7 days). The full range of mucus concentrations (0.9-3.3%) observed during culture was comparable to that displayed by ex vivo mucus (1.3-1.9%). Bulk rheological measurements displayed similar wt%-based complex viscosities between in vitro and ex vivo mucus, with the complex viscosity of both systems increasing with wt% of solids. Particle-tracking microrheology showed higher complex viscosities for ex vivo mucus samples than in vitro mucus which was explained by a greater fraction of water present in in vitro mucus than ex vivo, i.e., in vitro mucus is more heterogeneous than ex vivo. Refractometry, multiangle laser light scattering, and immunostaining showed increased mucus complex size in ex vivo mucus compared with in vitro mucus, which may have been due to the admixture of mucus and cellular debris during ex vivo mucus collection. The air-liquid interface culture system produced intestinal mucus with similar composition and rheology to native human gut mucus, providing a platform to analyze pathological differences in intestinal mucus.
Asunto(s)
Mucosa Intestinal , Moco , Humanos , Intestinos , Reología , ViscosidadRESUMEN
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology.
Asunto(s)
Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , ARN Mensajero/metabolismo , Smegmamorpha/metabolismo , Pez Cebra/metabolismo , Animales , California , Colon/citología , Colon/crecimiento & desarrollo , Colon/metabolismo , Duodeno/citología , Duodeno/crecimiento & desarrollo , Duodeno/metabolismo , Femenino , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria , Genómica/métodos , Humanos , Íleon/citología , Íleon/crecimiento & desarrollo , Íleon/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Yeyuno/citología , Yeyuno/crecimiento & desarrollo , Yeyuno/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Especificidad de Órganos , Ríos , Smegmamorpha/crecimiento & desarrollo , Especificidad de la Especie , Pez Cebra/crecimiento & desarrolloRESUMEN
OBJECTIVE: The clinical presentation and course of Crohn's disease (CD) is highly variable. We sought to better understand the cellular and molecular mechanisms that guide this heterogeneity, and characterise the cellular processes associated with disease phenotypes. DESIGN: We examined both gene expression and gene regulation (chromatin accessibility) in non-inflamed colon tissue from a cohort of adult patients with CD and control patients. To support the generality of our findings, we analysed previously published expression data from a large cohort of treatment-naïve paediatric CD and control ileum. RESULTS: We found that adult patients with CD clearly segregated into two classes based on colon tissue gene expression-one that largely resembled the normal colon and one where certain genes showed expression patterns normally specific to the ileum. These classes were supported by changes in gene regulatory profiles observed at the level of chromatin accessibility, reflective of a fundamental shift in underlying molecular phenotypes. Furthermore, gene expression from the ilea of a treatment-naïve cohort of paediatric patients with CD could be similarly subdivided into colon-like and ileum-like classes. Finally, expression patterns within these CD subclasses highlight large-scale differences in the immune response and aspects of cellular metabolism, and were associated with multiple clinical phenotypes describing disease behaviour, including rectal disease and need for colectomy. CONCLUSIONS: Our results strongly suggest that these molecular signatures define two clinically relevant forms of CD irrespective of tissue sampling location, patient age or treatment status.
Asunto(s)
Enfermedad de Crohn/genética , Adulto , Factores de Edad , Estudios de Casos y Controles , Niño , Colon/metabolismo , Enfermedad de Crohn/clasificación , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/terapia , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Íleon/metabolismo , Masculino , Fenotipo , Análisis de Componente Principal , PronósticoRESUMEN
Intestinal macrophages (IMs) are uniquely programmed to tolerate exposure to bacteria without mounting potent inflammatory responses. The cytokine IL-10 maintains the macrophage anti-inflammatory response such that loss of IL-10 results in chronic intestinal inflammation. To investigate how IL-10-deficiency alters IM programming and bacterial tolerance, we studied changes in chromatin accessibility in response to bacteria in macrophages from two distinct niches, the intestine and bone-marrow, from both wild-type and IL-10-deficient (Il10(-/-) ) mice. We identified chromatin accessibility changes associated with bacterial exposure and IL-10 deficiency in both bone marrow derived macrophages and IMs. Surprisingly, Il10(-/-) IMs adopted chromatin and gene expression patterns characteristic of an inflammatory response, even in the absence of bacteria. Further, when recombinant IL-10 was added to Il10(-/-) cells, it could not revert the chromatin landscape to a normal state. Our results demonstrate that IL-10 deficiency results in stable chromatin alterations in macrophages, even in the absence of bacteria. This supports a model in which IL-10-deficiency leads to chromatin alterations that contribute to a loss of IM tolerance to bacteria, which is a primary initiating event in chronic intestinal inflammation.
Asunto(s)
Cromatina/metabolismo , Inflamación/inmunología , Interleucina-10/genética , Intestinos/fisiopatología , Macrófagos/metabolismo , Animales , Citocinas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Humanos , Tolerancia Inmunológica , Intestinos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
The p110δ subunit of class IA PI3K modulates signaling in innate immune cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δ(KD)) develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δ(KD) mice through increased IL-12 and IL-23 expression. In this study, we show that the enteric microbiota is required for colitis development in germfree p110δ(KD) mice. Colonic tissue and macrophages from p110δ(KD) mice produce significantly less IL-10 compared with wild-type mice. p110δ(KD) APCs cocultured with naive CD4+ Ag-specific T cells also produce significantly less IL-10 and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared with wild-type APCs. Illustrating the importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1(-/-)/p110δ(KD) mice develop mild colonic inflammation and produced more colonic IL-12p40 compared with Rag1(-/-) mice. However, CD4+ CD45RB(high/low) T cell Rag1(-/-)/p110δ(KD) recipient mice develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+D4+ T cells compared with Rag1(-/-) recipient mice. Intestinal tissue samples from patients with Crohn's disease reveal significantly lower expression of PIK3CD compared with intestinal samples from non-inflammatory bowel disease control subjects (p < 0.05). PIK3CD expression inversely correlates with the ratio of IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression and/or function may underlie the pathogenesis of human inflammatory bowel disease and lead to new therapeutic strategies.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Colitis/inmunología , Colitis/metabolismo , Inmunidad Innata , Células TH1/metabolismo , Células Th17/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Colitis/genética , Colitis/microbiología , Colitis/patología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Inmunidad Innata/genética , Interleucina-10/biosíntesis , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Microbiota , Serina-Treonina Quinasas TOR/metabolismo , Células TH1/inmunología , Células Th17/inmunologíaRESUMEN
NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Interleucina-10/genética , Subunidad p40 de la Interleucina-12/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Microbiota/inmunología , Traslado Adoptivo , Animales , Proteínas de Arabidopsis/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Cultivadas , Colon/inmunología , Colon/patología , Predisposición Genética a la Enfermedad , Subunidad p40 de la Interleucina-12/genética , Subunidad p19 de la Interleucina-23/genética , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células TH1/inmunología , Células Th17/inmunología , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish. METHODS: Germ-free, wild-type, and interleukin (Il)10(-/-) mice and germ-free zebrafish embryos were colonized with specific pathogen-free (SPF) microbiota. Germ-free or SPF-raised wild-type and Il10(-/-) mice were given intraperitoneal injections of cobalt(III) protoporphyrin IX chloride (CoPP), which up-regulates HO-1, the CO-releasing molecule Alfama-186, or saline (control). Colitis was induced in wild-type mice housed in SPF conditions by infection with Salmonella typhimurium. RESULTS: In colons of germ-free, wild-type mice, SPF microbiota induced production of HO-1 via activation of nuclear factor erythroid 2-related factor 2-, IL-10-, and Toll-like receptor-dependent pathways; similar observations were made in zebrafish. SPF microbiota did not induce HO-1 in colons of germ-free Il10(-/-) mice. Administration of CoPP to Il10(-/-) mice before transition from germ-free to SPF conditions reduced their development of colitis. In Il10(-/-) mice, CO and CoPP reduced levels of enteric bacterial genomic DNA in mesenteric lymph nodes. In mice with S typhimurium-induced enterocolitis, CoPP reduced the numbers of live S typhimurium recovered from the lamina propria, mesenteric lymph nodes, spleen, and liver. Knockdown of HO-1 in mouse macrophages impaired their bactericidal activity against E coli, E faecalis, and S typhimurium, whereas exposure to CO or overexpression of HO-1 increased their bactericidal activity. HO-1 induction and CO increased acidification of phagolysosomes. CONCLUSIONS: Colonic HO-1 prevents colonic inflammation in mice. HO-1 is induced by the enteric microbiota and its homeostatic function is mediated, in part, by promoting bactericidal activities of macrophages.
Asunto(s)
Traslocación Bacteriana/fisiología , Monóxido de Carbono/farmacología , Colitis/prevención & control , Hemo-Oxigenasa 1/metabolismo , Salmonella typhimurium/fisiología , Animales , Traslocación Bacteriana/efectos de los fármacos , Western Blotting , Colitis/tratamiento farmacológico , Colitis/microbiología , Modelos Animales de Enfermedad , Escherichia coli/patogenicidad , Gentamicinas/farmacología , Hemo-Oxigenasa 1/biosíntesis , Macrófagos/citología , Macrófagos/fisiología , Metagenoma , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la PolimerasaAsunto(s)
Absceso Abdominal/diagnóstico por imagen , Gastroplastia , Gastroscopía , Obesidad/cirugía , Vena Porta/diagnóstico por imagen , Infecciones Estreptocócicas/diagnóstico , Infección de la Herida Quirúrgica/diagnóstico por imagen , Trombosis de la Vena/diagnóstico por imagen , Absceso Abdominal/terapia , Adulto , Antibacterianos/uso terapéutico , Anticoagulantes/uso terapéutico , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Traslocación Bacteriana , Drenaje , Femenino , Humanos , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/terapia , Infecciones Estreptocócicas/terapia , Streptococcus anginosus , Infección de la Herida Quirúrgica/terapia , Tomografía Computarizada por Rayos X , Trombosis de la Vena/tratamiento farmacológicoRESUMEN
To prevent excessive inflammatory responses to commensal microbes, intestinal macrophages, unlike their systemic counterparts, do not produce inflammatory cytokines in response to enteric bacteria. Consequently, loss of macrophage tolerance to the enteric microbiota plays a central role in the pathogenesis of inflammatory bowel diseases. Therefore, we examined whether the hyporesponsive phenotype of intestinal macrophages is programmed by prior exposure to the microbiota. IL-10, but not in vivo exposure to the microbiota, programs intestinal macrophage tolerance, because wild-type (WT) colonic macrophages from germ-free and specific pathogen-free (SPF)-derived mice produce IL-10, but not IL-12 p40, when activated with enteric bacteria. Basal and activated IL-10 expression is mediated through a MyD88-dependent pathway. Conversely, colonic macrophages from germ-free and SPF-derived colitis-prone Il10(-/-) mice demonstrated robust production of IL-12 p40. Next, mechanisms through which IL-10 inhibits Il12b expression were investigated. Although Il12b mRNA was transiently induced in LPS-activated WT bone marrow-derived macrophages (BMDMs), expression persisted in Il10(-/-) BMDMs. There were no differences in nucleosome remodeling, mRNA stability, NF-κB activation, or MAPK signaling to explain prolonged transcription of Il12b in Il10(-/-) BMDMs. However, acetylated histone H4 transiently associated with the Il12b promoter in WT BMDMs, whereas association of these factors was prolonged in Il10(-/-) BMDMs. Experiments using histone deacetylase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate that HDAC3 is involved in histone deacetylation of the Il12b promoter by IL-10. These results suggest that histone deacetylation on the Il12b promoter by HDAC3 mediates homeostatic effects of IL-10 in macrophages.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Homeostasis/inmunología , Interleucina-10/inmunología , Subunidad p40 de la Interleucina-12/biosíntesis , Macrófagos/inmunología , Acetilación , Animales , Histona Desacetilasas/inmunología , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/inmunología , Histonas/metabolismo , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genéticaRESUMEN
Pediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas and progression to surgery were analyzed using differential expression and modeled using machine learning. Differential expression analysis revealed downregulation of pathways related to inflammation and extra-cellular matrix production in patients with strictures. Machine learning-based models were able to incorporate colonic gene expression and clinical characteristics to predict outcomes with high accuracy. Models showed an area under the receiver operating characteristic curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive models. Our findings in FFPE tissue support the importance of colonic gene expression and the potential for machine learning-based models in predicting outcomes for pediatric CD.
Asunto(s)
Enfermedad de Crohn , Niño , Humanos , Constricción Patológica , Enfermedad de Crohn/patología , Expresión Génica , Aprendizaje Automático , Litostatina/genéticaRESUMEN
Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.
Asunto(s)
Enfermedad de Crohn , MicroARNs , Adulto , Animales , Ratones , Humanos , Niño , Enfermedad de Crohn/patología , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , InflamaciónRESUMEN
Genome-wide association studies (GWAS) have identified over 300 loci associated with the inflammatory bowel diseases (IBD), but putative causal genes for most are unknown. We conducted the largest disease-focused expression quantitative trait loci (eQTL) analysis using colon tissue from 252 IBD patients to determine genetic effects on gene expression and potential contribution to IBD. Combined with two non-IBD colon eQTL studies, we identified 194 potential target genes for 108 GWAS loci. eQTL in IBD tissue were enriched for IBD GWAS loci colocalizations, provided novel evidence for IBD-associated genes such as ABO and TNFRSF14, and identified additional target genes compared to non-IBD tissue eQTL. IBD-associated eQTL unique to diseased tissue had distinct regulatory and functional characteristics with increased effect sizes. Together, these highlight the importance of eQTL studies in diseased tissue for understanding functional consequences of genetic variants, and elucidating molecular mechanisms and regulation of key genes involved in IBD.
RESUMEN
Background and Aims: Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the tumor necrosis factor (TNF) promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and nonresponders. Methods: We obtained mucosal biopsies from 200 participants (133 IBDs and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 nonresponders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results: TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated intestinal epithelial cells from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF nonresponders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed 2 missense variants in DNA methyltransferase 1, 1 of which had reduced function in vivo. Conclusion: Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
RESUMEN
Background and aims: Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the TNF promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and non-responders. Methods: We obtained mucosal biopsies from 200 participants (133 IBD and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 non-responders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results: TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated IECs from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF non-responders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed two missense variants in DNMT1, one of which had reduced function in vivo. Conclusions: Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
RESUMEN
Cigarette smoking is a significant environmental factor in the human inflammatory bowel diseases, remarkably, conferring protection in ulcerative colitis. We previously demonstrated that a prominent component of cigarette smoke, CO, suppresses Th17-mediated experimental colitis in IL-10(-/-) mice through a heme oxygenase (HO)-1-dependent pathway. In this study, homeostatic and therapeutic effects of CO and HO-1 were determined in chronic colonic inflammation in TCR-α-deficient ((-/-)) mice, in which colitis is mediated by Th2 cytokines, similar to the cytokine milieu described in human ulcerative colitis. TCRα(-/-) mice exposed to CO or treated with the pharmacologic HO-1 inducer cobalt protoporphyrin demonstrated amelioration of active colitis. CO and cobalt protoporphyrin suppressed colonic IL-1ß, TNF, and IL-4 production, whereas IL-10 protein secretion was increased. CO induced IL-10 expression in macrophages and in vivo through an HO-1-dependent pathway. Bacterial products regulate HO-1 expression in macrophages through MyD88- and IL-10-dependent pathways. CO exposure and pharmacologic HO-1 induction in vivo resulted in increased expression of HO-1 and IL-10 in CD11b(+) lamina propria mononuclear cells. Moreover, induction of the IL-10 family member IL-22 was demonstrated in CD11b(-) lamina propria mononuclear cells. In conclusion, CO and HO-1 induction ameliorated active colitis in TCRα(-/-) mice, and therapeutic effects correlated with induction of IL-10. This study provides further evidence that HO-1 mediates an important homeostatic pathway with pleiotropic anti-inflammatory effects in different experimental models of colitis and that targeting HO-1, therefore, is a potential therapeutic strategy in human inflammatory bowel diseases.
Asunto(s)
Monóxido de Carbono/farmacología , Colitis/inmunología , Hemo-Oxigenasa 1/inmunología , Interleucina-10/inmunología , Células Th2/inmunología , Animales , Western Blotting , Separación Celular , Colitis/patología , Citocinas/biosíntesis , Citocinas/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hemo-Oxigenasa 1/metabolismo , Interleucina-10/biosíntesis , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Regulation of innate inflammatory responses against the enteric microbiota is essential for the maintenance of intestinal homeostasis. Key participants in innate defenses are macrophages. In these studies, the basic leucine zipper protein, NFIL3, is identified as a regulatory transcription factor in macrophages, controlling IL-12 p40 production induced by bacterial products and the enteric microbiota. Exposure to commensal bacteria and bacterial products induced NFIL3 in cultured macrophages and in vivo. The Il12b promoter has a putative DNA-binding element for NFIL3. Basal and LPS-activated NFIL3 binding to this site was confirmed by chromatin immunoprecipitation. LPS-induced Il12b promoter activity was inhibited by NFIL3 expression and augmented by NFIL3-short hairpin RNA in an Il12b-bacterial artificial chromosome-GFP reporter macrophage line. Il12b inhibition by NFIL3 does not require IL-10 expression, but a C-terminal minimal repression domain is necessary. Furthermore, colonic CD11b(+) lamina propria mononuclear cells from Nfil3(-/-) mice spontaneously expressed Il12b mRNA. Importantly, lower expression of NFIL3 was observed in CD14(+) lamina propria mononuclear cells from Crohn's disease and ulcerative colitis patients compared with control subjects. Likewise, no induction of Nfil3 was observed in colons of colitis-prone Il10(-/-) mice transitioned from germ-free to a conventional microbiota. In conclusion, these experiments characterize NFIL3 as an Il12b transcriptional inhibitor. Interactions of macrophages with the enteric microbiota induce NFIL3 to limit their inflammatory capacity. Furthermore, altered intestinal NFIL3 expression may have implications for the pathogenesis of experimental and human inflammatory bowel diseases.