Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 157(7): 1644-1656, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949974

RESUMEN

Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.


Asunto(s)
Herpesvirus Humano 4/química , Ingeniería de Proteínas , Proteínas/farmacología , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Biología Computacional , Cristalografía por Rayos X , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/fisiología , Xenoinjertos , Humanos , Linfoma de Células B/tratamiento farmacológico , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Trasplante de Neoplasias , Proteínas/química , Proteínas/metabolismo , Alineación de Secuencia , Proteínas Virales/química
2.
Nucleic Acids Res ; 51(8): 3513-3528, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794719

RESUMEN

Bacteriophage exclusion ('BREX') systems are multi-protein complexes encoded by a variety of bacteria and archaea that restrict phage by an unknown mechanism. One BREX factor, termed BrxL, has been noted to display sequence similarity to various AAA+ protein factors including Lon protease. In this study we describe multiple CryoEM structures of BrxL that demonstrate it to be a chambered, ATP-dependent DNA binding protein. The largest BrxL assemblage corresponds to a dimer of heptamers in the absence of bound DNA, versus a dimer of hexamers when DNA is bound in its central pore. The protein displays DNA-dependent ATPase activity, and ATP binding promotes assembly of the complex on DNA. Point mutations within several regions of the protein-DNA complex alter one or more in vitro behaviors and activities, including ATPase activity and ATP-dependent association with DNA. However, only the disruption of the ATPase active site fully eliminates phage restriction, indicating that other mutations can still complement BrxL function within the context of an otherwise intact BREX system. BrxL displays significant structural homology to MCM subunits (the replicative helicase in archaea and eukaryotes), implying that it and other BREX factors may collaborate to disrupt initiation of phage DNA replication.


Asunto(s)
Acinetobacter , Proteasa La , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Archaea/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Unión Proteica , Acinetobacter/enzimología , Acinetobacter/virología , Proteasa La/ultraestructura
3.
Nucleic Acids Res ; 47(1): 450-467, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30395313

RESUMEN

BbvCI, a Type IIT restriction endonuclease, recognizes and cleaves the seven base pair sequence 5'-CCTCAGC-3', generating 3-base, 5'-overhangs. BbvCI is composed of two protein subunits, each containing one catalytic site. Either site can be inactivated by mutation resulting in enzyme variants that nick DNA in a strand-specific manner. Here we demonstrate that the holoenzyme is labile, with the R1 subunit dissociating at low pH. Crystallization of the R2 subunit under such conditions revealed an elongated dimer with the two catalytic sites located on opposite sides. Subsequent crystallization at physiological pH revealed a tetramer comprising two copies of each subunit, with a pair of deep clefts each containing two catalytic sites appropriately positioned and oriented for DNA cleavage. This domain organization was further validated with single-chain protein constructs in which the two enzyme subunits were tethered via peptide linkers of variable length. We were unable to crystallize a DNA-bound complex; however, structural similarity to previously crystallized restriction endonucleases facilitated creation of an energy-minimized model bound to DNA, and identification of candidate residues responsible for target recognition. Mutation of residues predicted to recognize the central C:G base pair resulted in an altered enzyme that recognizes and cleaves CCTNAGC (N = any base).


Asunto(s)
División del ADN , Enzimas de Restricción del ADN/química , Holoenzimas/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/aislamiento & purificación , Escherichia coli/enzimología , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Mutación , Péptidos/química , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación
4.
Nucleic Acids Res ; 45(3): 1516-1528, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180307

RESUMEN

R.SwaI, a Type IIP restriction endonuclease, recognizes a palindromic eight base pair (bp) symmetric sequence, 5΄-ATTTAAAT-3΄, and cleaves that target at its center to generate blunt-ended DNA fragments. Here, we report three crystal structures of SwaI: unbound enzyme, a DNA-bound complex with calcium ions; and a DNA-bound, fully cleaved complex with magnesium ions. We compare these structures to two structurally similar 'PD-D/ExK' restriction endonucleases (EcoRV and HincII) that also generate blunt-ended products, and to a structurally distinct enzyme (the HNH endonuclease PacI) that also recognizes an 8-bp target site consisting solely of A:T base pairs. Binding by SwaI induces an extreme bend in the target sequence accompanied by un-pairing and re-ordering of its central A:T base pairs. This result is reminiscent of a more dramatic target deformation previously described for PacI, implying that long A:T-rich target sites might display structural or dynamic behaviors that play a significant role in endonuclease recognition and cleavage.


Asunto(s)
ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Secuencia Rica en At , Secuencia de Aminoácidos , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Homología Estructural de Proteína , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 112(12): 3704-9, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775555

RESUMEN

We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.


Asunto(s)
Carbono/química , Ingeniería de Proteínas/métodos , Proteínas/química , Biomasa , Vías Biosintéticas , Ciclo del Carbono , Catálisis , Clonación Molecular , Escherichia coli/enzimología , Formaldehído/química , Formiatos/química , Espectroscopía de Resonancia Magnética , Reacción en Cadena de la Polimerasa , Programas Informáticos , Termodinámica
6.
Nucleic Acids Res ; 40(11): 4954-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22334611

RESUMEN

LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences ≈ 20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering-many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications.


Asunto(s)
Endodesoxirribonucleasas/química , Secuencia de Aminoácidos , Cristalografía , ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Nucleic Acids Res ; 39(18): 8223-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21724614

RESUMEN

A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x(15)-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R-M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/química , Secuencia de Aminoácidos , Bacillus/enzimología , Dominio Catalítico , Cristalografía por Rayos X , División del ADN , Metilasas de Modificación del ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Alineación de Secuencia
8.
Structure ; 29(6): 521-530.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33826880

RESUMEN

Restriction enzymes that combine methylation and cleavage into a single assemblage and modify one DNA strand are capable of efficient adaptation toward novel targets. However, they must reliably cleave invasive DNA and methylate newly replicated unmodified host sites. One possible solution is to enforce a competition between slow methylation at a single unmodified host target, versus faster cleavage that requires multiple unmodified target sites in foreign DNA to be brought together in a reaction synapse. To examine this model, we have determined the catalytic behavior of a bifunctional type IIL restriction-modification enzyme and determined its structure, via cryoelectron microscopy, at several different stages of assembly and coordination with bound DNA targets. The structures demonstrate a mechanism in which an initial dimer is formed between two DNA-bound enzyme molecules, positioning the endonuclease domain from each enzyme against the other's DNA and requiring further additional DNA-bound enzyme molecules to enable cleavage.


Asunto(s)
Bacteriófagos/genética , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , ADN/metabolismo , Microscopía por Crioelectrón , ADN/química , Genoma Bacteriano , Genoma Viral , Inestabilidad Genómica , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
9.
Commun Biol ; 4(1): 1240, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716407

RESUMEN

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , SARS-CoV-2/metabolismo , Secuencias Repetidas en Tándem , Secuencia de Aminoácidos , COVID-19/virología , Simulación por Computador , Cristalización , Células HEK293 , Humanos , Modelos Moleculares , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Nat Struct Mol Biol ; 27(4): 342-350, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203491

RESUMEN

Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.


Asunto(s)
Nanopartículas/química , Ingeniería de Proteínas , Proteínas/química , Secuencias Repetidas en Tándem/genética , Secuencias de Aminoácidos/genética , Técnicas de Cultivo de Célula , Humanos , Modelos Moleculares , Dominios Proteicos/genética , Estabilidad Proteica , Proteínas/genética , Linfocitos T/química
11.
Nucleic Acids Res ; 35(21): 7209-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17947319

RESUMEN

The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of DeltaH and TDeltaS are not strongly correlated with the overall extent of DNA bending, unfavorable DeltaH(binding) is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific DeltaS(binding).


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Endodesoxirribonucleasas/química , Termodinámica , Disparidad de Par Base , Calorimetría , ADN/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/metabolismo , Dimerización , Endodesoxirribonucleasas/clasificación , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína
12.
J Mol Biol ; 358(4): 1137-51, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16569414

RESUMEN

I-HmuI and I-BasI are two highly similar nicking DNA endonucleases, which are each encoded by a group I intron inserted into homologous sites within the DNA polymerase genes of Bacillus phages SPO1 and Bastille, respectively. Here, we present a comparison of the DNA specificities and cleavage activities of these enconucleases with homologous target sites. I-BasI has properties that are typical of homing endonucleases, nicking the intron-minus polymerase genes in either host genome, three nucleotides downstream of the intron insertion site. In contrast, I-HmuI nicks both the intron-plus and intron-minus site in its own host genome, but does not act on the target from Bastille phage. Although the enzymes have distinct DNA substrate specificities, both bind to an identical 25bp region of their respective intron-minus DNA polymerase genes surrounding the intron insertion site. The endonucleases appear to interact with the DNA substrates in the downstream exon 2 in a similar manner. However, whereas I-HmuI is known to make its only base-specific contacts within this exon region, structural modeling analyses predict that I-BasI might make specific base contacts both upstream and downstream of the site of intron insertion. The predicted requirement for base-specific contacts in exon 1 for cleavage by I-BasI was confirmed experimentally. This explains the difference in substrate specificities between the two enzymes, including the observation that the former enzyme is relatively insensitive to the presence of an intron upstream of exon 2. These differences are likely a consequence of divergent evolutionary constraints.


Asunto(s)
Fagos de Bacillus/enzimología , Desoxirribonucleasa I/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fagos de Bacillus/genética , Secuencia de Bases , Sitios de Unión/genética , Metilación de ADN , ADN Viral/genética , ADN Viral/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/genética , Escherichia coli/genética , Genes Bacterianos , Radical Hidroxilo/metabolismo , Intrones , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
13.
J Mol Biol ; 428(1): 206-220, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26705195

RESUMEN

LAGLIDADG homing endonucleases ("meganucleases") are highly specific DNA cleaving enzymes that are used for genome engineering. Like other enzymes that act on DNA targets, meganucleases often display binding affinities and cleavage activities that are dominated by one protein domain. To decipher the underlying mechanism of asymmetric DNA recognition and catalysis, we identified and characterized a new monomeric meganuclease (I-SmaMI), which belongs to a superfamily of homologous enzymes that recognize divergent DNA sequences. We solved a series of crystal structures of the enzyme-DNA complex representing a progression of sequential reaction states, and we compared the structural rearrangements and surface potential distributions within each protein domain against their relative contribution to binding affinity. We then determined the effects of equivalent point mutations in each of the two enzyme active sites to determine whether asymmetry in DNA recognition is translated into corresponding asymmetry in DNA cleavage activity. These experiments demonstrate the structural basis for "dominance" by one protein domain over the other and provide insights into this enzyme's conformational switch from a nonspecific search mode to a more specific recognition mode.


Asunto(s)
ADN/química , ADN/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Endonucleasas/genética , Hidrólisis , Modelos Moleculares , Mutación Puntual , Conformación Proteica
14.
Structure ; 24(6): 862-73, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27133026

RESUMEN

LAGLIDADG meganucleases are DNA cleaving enzymes used for genome engineering. While their cleavage specificity can be altered using several protein engineering and selection strategies, their overall targetability is limited by highly specific indirect recognition of the central four base pairs within their recognition sites. In order to examine the physical basis of indirect sequence recognition and to expand the number of such nucleases available for genome engineering, we have determined the target sites, DNA-bound structures, and central four cleavage fidelities of nine related enzymes. Subsequent crystallographic analyses of a meganuclease bound to two noncleavable target sites, each containing a single inactivating base pair substitution at its center, indicates that a localized slip of the mutated base pair causes a small change in the DNA backbone conformation that results in a loss of metal occupancy at one binding site, eliminating cleavage activity.


Asunto(s)
ADN/química , ADN/metabolismo , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Secuencia de Bases , Sitios de Unión , División del ADN , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Especificidad por Sustrato
15.
Elife ; 52016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805565

RESUMEN

Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Apoptosis/genética , Biología Computacional , Humanos , Neoplasias/patología , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química
16.
J Mol Biol ; 342(1): 43-56, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15313606

RESUMEN

The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Colicinas/química , Cristalografía por Rayos X , ADN/química , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
17.
J Mol Biol ; 332(2): 385-98, 2003 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12948489

RESUMEN

Human ADP-ribose pyrophosphatase NUDT9 belongs to a superfamily of Nudix hydrolases that catabolize potentially toxic compounds in the cell. The enzyme hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. NUDT9 shares 39% sequence identity with the C-terminal cytoplasmic domain of the ADPR-gated calcium channel TRPM2, which exhibits low but specific enzyme activity. We determined crystal structures of NUDT9 in the presence and in the absence of the reaction product ribose 5'-phosphate. On the basis of these structures and comparison with a bacterial homologue, a model of the substrate complex was built. The structure and activity of a double point mutant (R(229)E(230)F(231) to R(229)I(230)L(231)), which mimics the Nudix signature of the ion channel domain, was determined. Finally, the activities of a pair of additional mutated constructs were compared to the wild-type enzyme. The first corresponds to a minimal Nudix domain missing an N-terminal domain and C-terminal tail; the second disrupts two potential general bases in the active site. NUDT9 contains an N-terminal domain with a novel fold and a catalytic C-terminal Nudix domain. Unlike its closest functional homologue (homodimeric Escherichia coli ADPRase), it is active as a monomer, and the substrate is bound in a cleft between the domains. The structure of the RIL mutant provides structural basis for the reduced activity of the TRPM2 ion channel. The conformation and binding interactions of ADPR substrate are predicted to differ from those observed for E.coli ADPRase; mutation of structurally aligned acidic residues in their active sites produce significantly different effects on catalytic efficiency, indicating that their reaction pathways and mechanisms may have diverged.


Asunto(s)
Estructura Terciaria de Proteína , Pirofosfatasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Ribosamonofosfatos/metabolismo , Alineación de Secuencia
18.
Nat Struct Mol Biol ; 22(2): 167-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580576

RESUMEN

Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high-affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat-protein scaffolds and apply it to leucine-rich-repeat proteins. First, self-compatible building-block modules are designed that, when polymerized, generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom-designed shapes are generated by appropriately combining building-block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat-protein curvature.


Asunto(s)
Proteínas/química , Cristalografía por Rayos X , Proteínas Repetidas Ricas en Leucina , Conformación Proteica , Ingeniería de Proteínas/métodos
19.
Nat Biotechnol ; 30(2): 190-2, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22267011

RESUMEN

Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems.


Asunto(s)
Enzimas/química , Enzimas/síntesis química , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad , Algoritmos , Catálisis , Biología Computacional , Cristalografía por Rayos X , Secuencias Hélice-Giro-Hélice , Humanos , Modelos Moleculares , Especificidad por Sustrato , Juegos de Video
20.
Structure ; 18(6): 734-43, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20541511

RESUMEN

The crystal structure of the rare-cutting HNH restriction endonuclease PacI in complex with its eight-base-pair target recognition sequence 5'-TTAATTAA-3' has been determined to 1.9 A resolution. The enzyme forms an extended homodimer, with each subunit containing two zinc-bound motifs surrounding a betabetaalpha-metal catalytic site. The latter is unusual in that a tyrosine residue likely initiates strand cleavage. PacI dramatically distorts its target sequence from Watson-Crick duplex DNA base pairing, with every base separated from its original partner. Two bases on each strand are unpaired, four are engaged in noncanonical A:A and T:T base pairs, and the remaining two bases are matched with new Watson-Crick partners. This represents a highly unusual DNA binding mechanism for a restriction endonuclease, and implies that initial recognition of the target site might involve significantly different contacts from those visualized in the DNA-bound cocrystal structures.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , ADN , Emparejamiento Base , Secuencia de Bases , Dominio Catalítico/genética , ADN/química , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II , Metales/química , Estructura Terciaria de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA