Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 119016, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677405

RESUMEN

Household garbage rooms release abundant bioaerosols and are an important source of pathogens; however, information on the distribution and survival patterns of pathogens in different waste components is limited. In this study, a culture method and 16S rRNA high-throughput sequencing were used to determine bacterial communities, culturable pathogens, and human bacterial pathogens (HBPs). The results showed that abundant culturable bacteria were detected in all waste types, and a large number of S. aureus was detected on the surface of recyclable wastes, whereas S. aureus, total coliforms, Salmonella, Enterococcus, and hemolytic bacteria were detected in food waste and other waste. The activities of these detected pathogenic bacteria decreased after 24 h of storage but re-activated within one week. Factors affecting the emergence of pathogens varied with different waste components. Sequencing results showed that Pseudomonas, Acinetobacter, and Burkholderia were abundant in the waste samples, whereas Achromobacter, Exiguobacteriums, Bordetella, and Corynebacterium were the primary pathogens in the bioaerosol and wall attachment. The results of traceability analysis showed that bioaerosol microbes were mainly derived from raw kitchen waste (5.98%) and plastic and paper contaminated with food waste (19.93%) in garbage rooms. In addition, bioaerosols were the main source of microflora in the wall attachment, which possessed high HBP diversity and required more attention. These findings will help in understanding the microbial hazards in different waste components and provide guidance for the control and risk reduction of bioaerosols during waste management and recycling.


Asunto(s)
Aerosoles , Microbiología del Aire , Bacterias , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Aerosoles/análisis , Residuos de Alimentos , Humanos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Eliminación de Residuos , Monitoreo del Ambiente/métodos
2.
J Environ Manage ; 351: 119973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160547

RESUMEN

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Asunto(s)
Bacterias Anaerobias , Mezclas Complejas , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/química , Bacterias Anaerobias/metabolismo , Metano , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
3.
J Environ Manage ; 351: 119784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081091

RESUMEN

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Asunto(s)
Desulfovibrio , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/química , Instalaciones de Eliminación de Residuos , Sulfatos/química
4.
J Environ Manage ; 351: 119730, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086123

RESUMEN

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Eliminación de Residuos/métodos , Aguas del Alcantarillado/análisis , Residuos Peligrosos/análisis , Galvanoplastia , Plomo , Incineración/métodos , Metales Pesados/análisis , Residuos Sólidos/análisis , Carbono , Material Particulado/análisis
5.
J Environ Manage ; 359: 121085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728986

RESUMEN

Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.


Asunto(s)
Metano , Aguas del Alcantarillado , Anaerobiosis , Metano/metabolismo , Compuestos Férricos , Eliminación de Residuos Líquidos/métodos
6.
J Environ Manage ; 338: 117776, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965423

RESUMEN

Based on the CaO-SiO2-Al2O3 system, the feasibility of co-vitrification of hazardous waste incineration fly ash (FA) and hazardous waste sludge (HWS) was verified. In the CaO-SiO2-Al2O3 ternary system diagram, the melting point of the system gradually decreases with an appropriate increase in SiO2 content when the CaO/Al2O3 ratio is determined to be approximately 1. The TG-DSC results revealed that the liquid phase generation temperature in the FA and HWS mixture system was significantly lower than those of FA and HWS individually owing to the different CaO, SiO2, and Al2O3 contents; this is consistent with the results of the theoretical melting characteristics analysis, which show that the melting characteristic temperatures can be reduced by controlling the CaO-SiO2-Al2O3 ratio in the system. The co-vitrification experimental results confirmed that a vitreous content above 92%, a loss ratio on acid dissolution less than 1.74%, and leaching toxicity of heavy metals lower than 0.15 mg/L could be obtained by adjusting the CaO, SiO2, and Al2O3 contents in the FA and HWS system to 20 wt%-32.5 wt%, 35 wt%-61 wt% and 14 wt%-32.5 wt%, respectively, and under a melting temperature of 1350 °C.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Incineración , Dióxido de Silicio , Aguas del Alcantarillado , Vitrificación , Metales Pesados/análisis , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Carbono , Residuos Peligrosos , Material Particulado/análisis
7.
J Environ Sci (China) ; 126: 545-555, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503780

RESUMEN

Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone. In this study, within the relative pressure range of 0-0.6 MPa, the ambient temperature with the highest sulfate reduction rate of 50°C was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone. The results showed that the sulfate reduction rate might further increase with an increase in pressure; however, owing to the effect of pressure increase, the generated hydrogen sulfide (H2S) could not be released on time, thereby decreasing its highest concentration by approximately 85%, and the duration extended to about two times that of the atmospheric pressure. Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions, and there was a negative correlation between disulfide reductase B (dsrB) gene abundance and H2S release rate. Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone. This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.


Asunto(s)
Presión Atmosférica , Disulfuros , Fenómenos Químicos , Fenómenos Físicos , Sulfatos
8.
J Environ Manage ; 317: 115475, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662047

RESUMEN

Thermal treatment technology considerably affects the harmlessness of fly ash (FA), but highly toxic heavy metals, such as Cr, attract considerable attention. In this study, we investigated the influence of CaO dosage at 600°C-1200 °C on the curing effect of Cr during FA thermal treatment based on the combination effect of CaO. Static, dynamic, and continuous sequential leachings were performed for the sintered products. Results showed that the leaching concentration of Cr decreased by approximately 91% when CaO dosage was 8.57%, and the difference in the residual state was the main reason for the difference in the leaching behavior of Cr. The proportion of the residual state in the sintered products increased from 35.16% to 64.01%. The transition between Cr2O3, Cr5O12, and CaCr2O4 is the fundamental reason for the leaching behavior of Cr and the change in the residual state. This study provides a scientific basis for preventing and controlling heavy metal pollution and optimizing environmental supervision in the FA thermal treatment process.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Compuestos de Calcio , Carbono , Cromo , Ceniza del Carbón/análisis , Residuos Peligrosos , Incineración , Metales Pesados/análisis , Óxidos , Material Particulado , Eliminación de Residuos/métodos , Residuos Sólidos/análisis
9.
J Environ Manage ; 322: 116144, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067661

RESUMEN

Acid rain is a global environmental problem that mobilizes heavy metals in soils, while the distribution and geochemical fraction of heavy metals during acid rain infiltration in heterogeneous soils are still unclear. In this study, we performed column experiments to investigate the distribution and geochemical fraction of Cu, Pb, Ni and Cd in heterogeneously layered soils during continuous acid rain infiltration. Chloride ion used as a conservative tracer was found to be uniformly distributed during acid rain infiltration, showing insignificant preferential flow effects in the column. In contrast, however, the distribution of heavy metals was highly non-uniform, especially in the silty soil at the lower part of the column, indicating a heterogeneous distribution of adsorption capacity. In addition, in the control experiments with neutral rain infiltration, uniform distribution of heavy metals was observed, indicating that the heterogeneous distribution of adsorption coefficient during acid rain infiltration was mainly caused by different pH buffering capacities. A numerical model considering water flow and solute transport was developed, where the average water-solid distribution coefficient (Kd) in Layer 2 was only 1.5-12.5% of that in Layer 1 during acid rain infiltration. The model could predict the variation of heavy metal concentrations in soil with the majority of error less than 35%, confirming that different Kd induced the heterogeneous distribution of heavy metals. In addition, the geochemical fraction of heavy metals in the upper coarse sand layer remained stable, while the acid-extractable fractions in the lower loam and silt loam layer gradually increased. Our findings suggest that soil heterogeneity, especially chemical heterogeneity affected by rainfall acidity, has an important influence on the infiltration, migration and geochemical fraction of heavy metals in soils. This study could help guide the risk assessment of heavy metal-contaminated sites that were polluted by acid rain or landfill leachate.


Asunto(s)
Lluvia Ácida , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Cadmio , China , Cloruros , Monitoreo del Ambiente , Plomo , Metales Pesados/análisis , Arena , Suelo , Contaminantes del Suelo/análisis , Agua
10.
Environ Res ; 194: 110614, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345900

RESUMEN

The moving bed biofilm reactor (MBBR) has certain advantages, such as high wastewater treatment efficiency, low maintenance and operating costs, and simple operation. It has emerged as a valuable option for small decentralized facilities. The filling ratio, aeration mode and aeration intensity are the main factors that affect the performance of MBBRs in wastewater treatment. However, the information that concerns the used criteria that pertain to the process design for the MBBR is not adequate. In this study, a three dimensional computational fluid dynamics (CFD) model was constructed and the maximum error was only 1.98%, which was much smaller than the traditional 2D-CFD model. The filling ratio, aeration mode and aeration intensity of MBBR were optimized by CFD model from the point of view of fluid mechanics. The results show that the fluidization performance of the filling is the best under the one-side aeration mode with 30% filling ratio. The cost-performance ratio of the reactor with 30% filling ratio was 1.53, 25% and 35% filling ratio were only 1.17 and 1.14 respectively. Increasing the aeration intensity could improve the fluidization performance. However, the effect of high aeration intensity on the fluidization performance of the carrier was limited and the energy consumption increased greatly. The results revealed that when the aeration intensity increased from 0.07 min-1 to 0.13 min-1, the proportion of the carrier area increased by 16.56%. The proportion of the carrier area with an aeration rate of 0.20 min-1 was only 4.23%, which is higher than 0.13 min-1. The main factors that control the fluidization of the carrier were the range of the flow zone and the flow velocity of the liquid. Increasing the range of the flow zone could facilitate the flow of the carriers. The critical value of the flow velocity of the liquid in the flow zone was 0.04 m/s. These results could guide the optimization design of the filling ratio and the aeration conditions and provide a theoretical basis for the application of MBBR.


Asunto(s)
Biopelículas , Purificación del Agua , Reactores Biológicos , Hidrodinámica , Eliminación de Residuos Líquidos , Aguas Residuales
11.
Environ Res ; 197: 111194, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33878316

RESUMEN

Landfills are sites for the disposal of waste over decades. The dynamics of contaminants during landfill treatment influence the functions and environmental risks of the landfill systems, but the patterns of these dynamics are not fully characterized, especially for antibiotic resistant genes (ARGs), an emerging contaminant of global concern. Here, seventeen typical ARG subtypes were quantitatively investigated in refuse samples from small and medium-sized landfills with ages of <3 years, ~5 years, and 8-10 years. The abundance of ARGs, including tetM, tetX, blaPER, emrB, sul1 and sul2, increased significantly (p < 0.05), approaching 8- to 304-fold on average, from refuse of < 3years to that of 8-10 years, while there was no obvious change (p > 0.05) in abundance for other ARGs, including tetQ, tetW, ampC, blaCTX-M, blaSHV, emrA, mefA, qnrD, qnrS, and mexF. Accordingly, resistance to tetracyclines, macrolides, and sulfonamides increased with landfill age, while resistance to ß-lactams and quinolones remained unchanged. The increase in ARG abundance with increasing refuse age was probably related with the increased horizontal gene transfer (HGT) (indicated by the increased abundance of mobile gene elements) and the enhanced co-selective pressure (suggested by the increased contents of heavy metals). These results indicated a potential risk from ARG enrichment with an increase in refuse age in small and medium-sized landfills, which should be managed to ensure landfill safety.


Asunto(s)
Antibacterianos , Metales Pesados , Antibacterianos/toxicidad , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metales Pesados/análisis , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
12.
Curr Microbiol ; 78(2): 659-667, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33398446

RESUMEN

The bacterium Pseudomonas aeruginosa negatively regulates denitrification under anerobic conditions by two acyl-homoserine lactone quorum-sensing (QS) systems called las and rhl. However, it is unknown whether these systems have the same effect on denitrification in aerobic conditions. In this study, we investigated the regulation of las and rhl systems on aerobic denitrification. We showed that the removal of nitrate in P. aeruginosa PAO1 was repressed by both the las and rhl systems. The las and rhl systems had negative effects on activities of denitrifying enzymes NAP, NIR, NOR, and NOS. At the level of transcription, both QS systems inhibited the expression of target genes napA, nirS, norB, norC, and nosZ. Furthermore, the addition of an acylase, which degrades the acyl-homoserine lactone signals (AHLs), to wild type resulted in an increase in the removal of nitrate. Additionally, in aerobic denitrification process, the transcription factor DNR, which controls denitrification, was repressed by both QS systems. The results implied that modulation of QS in denitrifying bacteria, possibly through quorum quenching or QS inhibition, could help to improve the reduction of nitrate in wastewater treatment.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desnitrificación , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción
13.
Ecotoxicol Environ Saf ; 217: 112240, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901783

RESUMEN

Quorum sensing (QS) plays an important role in the intensive communication between plants and microbes in the rhizosphere during the phytoremediation. This study explored the influence of the root exudates of hyperaccumulator Sedum alfredii on Pseudomonas aeruginosa based on QS. The effects of the components of root exudates, genes expression and transcription regulation of QS system (especially the las system) in Pseudomonas aeruginosa wild-type strain (WT) and rhl system mutant strain (ΔrhlI) were systematically analyzed and discussed. The WT and ΔrhlI exposed to gradient root exudates (0×, 1×, 2×, 5× and 10×) showed a concentration-corrective inhibition on protease production, with the inhibition rates of 51.4-74.5% and 31.2-50.0%, respectively. Among the components of the root exudates of Sedum alfredii, only thymol had an inhibition effects to the root exudates on the activity of protease and elastase. The inhibition rates of 50 µmol/L thymol on protease and elastase in WT were 44.7% and 24.3%, respectively, which was consistent with the variation in ΔrhlI. The gene expression of lasB declined 36.0% under the 1× root exudate treatment and 73.0% under the 50 µmol/L thymol treatment. Meanwhile, there was no significant impact on N-3-oxo-dodecanoyl-L-homoserine lactone signal production and the gene expression of lasI and lasR. Therefore, thymol from Sedum alfredii root exudates could inhibit the formation of protease and elastase in Pseudomonas aeruginosa by suppressing the expression of lasB, without any significant influence on the main las system as a potential natural QS inhibitor.


Asunto(s)
Exudados de Plantas/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Sedum , 4-Butirolactona/análogos & derivados , Proteínas Bacterianas/metabolismo , Exudados y Transudados/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/metabolismo
14.
J Environ Sci (China) ; 103: 43-49, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743917

RESUMEN

The occurrence of the Maillard reaction and melanoidins formation during the hydrothermal treatment of food waste can reduce the yield of volatile fatty acids (VFA); however, few studies have investigated the adverse effects of the Maillard reaction. This study identified the impact of hydrothermal treatment parameters on hydrolysis and melanoidins formation and optimized the hydrothermal treatment conditions to enhance VFA production by minimizing the impact of the Maillard reaction. A response surface methodology was employed to optimize the hydrothermal treatment parameters and VFA production was evaluated. Results showed that temperature, reaction time, and pH were significant interacting factors with respect to hydrolysis and melanoidins formation while the C/N ratio and moisture content of food waste had little impact. The optimal conditions for hydrothermal treatment (temperature of 132 °C, reaction time of 27 min, and a pH of 5.6) enhanced VFA production by 22.1%. Under optimal hydrothermal treatment conditions, a higher initial C/N ratio further increased VFA production.


Asunto(s)
Alimentos , Eliminación de Residuos , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno , Reacción de Maillard
15.
Environ Res ; 184: 109340, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32209494

RESUMEN

5-Hydroxymethylfurfural (HMF) as value-added platform chemical can be derived from biomass. This study used microwave hydrothermal liquefaction (MHTL) to obtain HMF from sugarcane bagasse in acidic seawater conditions. The key processing parameters including temperature, reaction time, and liquid-to-solid ratio (L/S) were evaluated and optimized. The highest HMF yield of 8.1 wt% was obtained at 149 °C with a reaction time of 4 min and a L/S value of 12:1, respectively. This yield is considerable and even higher than the yield derived from sugarcane molasses under similar microwave conditions in the absence of seawater. Hence, acidic seawater was found to promote the hydrolysis of sugarcane bagasse to give HMF precursor (i.e. fructose and glucose), while simultaneously inhibiting the conversion of HMF to levulinic acid under MHTL conditions, possibly explaining the high HMF yield. This method presents a new and sustainable means of transforming waste biomass to valuable substances using seawater or brine wastewater.


Asunto(s)
Saccharum , Celulosa , Furaldehído/análogos & derivados , Microondas , Agua de Mar
16.
Ecotoxicol Environ Saf ; 190: 110131, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31901538

RESUMEN

Landfills are one of the most important reservoirs of antibiotic resistance genes (ARGs), and ARG pollution in landfills has been well investigated. However, the various factors contributing to the widespread prevalence of ARGs in landfills have rarely been explored. Here, we quantified three classes of antibiotics, six kinds of heavy metals, eight types of ARGs, and five varieties of mobile genetic elements (MGEs) in refuse samples from 10 landfills in Zhejiang Province, China. Compared with sulfonamides and macrolides, fluoroquinolones were present at much higher concentrations in all refuse samples, reaching a concentration of 1406.85 µg/kg in the Jiaxing region. The relative abundances of qnrD, qnrS, mexF, ermA, ermB, mefA, sul1, and sul2 in most landfills were >10-4 copies per 16S rRNA, suggesting the presence of highly contaminated ARGs. No significant correlations between most target antibiotics and their corresponding ARGs were found. Variation partitioning analysis indicated that MGEs could be the determining factor in the spread of ARGs in landfills. This research not only reveals high levels of ARGs and the ubiquitous presence of antibiotics in refuse, but also provides guidance for controlling the spread of ARGs in landfills.


Asunto(s)
Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Instalaciones de Eliminación de Residuos , Antibacterianos , China , Fluoroquinolonas , Genes Bacterianos/efectos de los fármacos , Macrólidos , Metales Pesados/análisis , Prevalencia , ARN Ribosómico 16S/genética , Sulfonamidas
17.
Molecules ; 25(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012651

RESUMEN

Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and N-acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.


Asunto(s)
Quitina/metabolismo , Contaminación Ambiental/prevención & control , Furaldehído/análogos & derivados , Biomasa , Furaldehído/metabolismo
18.
Environ Geochem Health ; 42(10): 3471-3479, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32419089

RESUMEN

China, the largest producer and user of antibiotics in the world, discharges excessive amounts of these substances into the environment, without prior treatment. This results in ubiquitous distribution of these substances, as well as increased levels of drug-resistant bacteria, that will eventually cause unimaginable consequences to the environment and to humans. However, most of the research on antibiotics has focused on residue analysis of single medium such as wastewater and landfills. There is paucity of research that systematically investigates the fate of antibiotics after excretion, and specifically of end-treatment processes. In this paper, the fate of antibiotic emissions is systematically calculated. The results show that human and livestock feces account for 57.6% and 42.6% of the discharge of medicinal antibiotics and veterinary antibiotics, respectively. Of these feces types, pig feces accounted for 98.7% of antibiotic residues in livestock feces. The above conclusions can be used to clarify the direction of the tracking and supervision of antibiotic residues and provide new ideas for the treatment of antibiotics, especially their terminal removal.


Asunto(s)
Antibacterianos/análisis , Ganado/metabolismo , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Animales , China , Heces/química , Humanos , Eliminación Intestinal , Modelos Biológicos
19.
J Environ Sci (China) ; 98: 179-185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33097150

RESUMEN

Bioaugmentation of denitrifying bacteria can serve as a promising technique to improve nutrient removal during wastewater treatment. While denitrification inhibition by bacterial quorum sensing (QS) in Pseudomonas aeruginosa has been indicated, the application of bacterial QS disruption to improve nitrate removal from wastewater has not been investigated. In this study, the effect of bioaugmentation of P. aeruginosa SD-1 on nitrate removal in sequencing batch reactors that treat nitrate rich wastewater was assessed. Additionally, the potential of a quorum sensing inhibitor (QSI) to improve denitrification following bacterial bioaugmentation was evaluated. Curcumin, a natural plant extract, was used as a QSI. The chemical oxygen demand (COD) and initial nitrate concentration of the influent were 700±20 mg/L and 200±10 mg/L respectively, and their respective concentrations in the effluent were 56.9±3.2 mg/L and 9.0±3.2 mg/L. Thus, the results revealed that bioaugmentation of P. aeruginosa SD-1 resulted in an increased nitrate removal to 82%±1%. Further, nitrate was almost completely removed following the addition of the QSI, and activities of nitrate reductase and nitrite reductase increased by 88%±2% and 74%±2% respectively. The nitrogen mass balance indicated that aerobic denitrification was employed as the main pathway for nitrogen removal in the reactors. The results imply that bioaugmentation and modulation of QS in denitrifying bacteria, through the use of a QSI, can enhance nitrate removal during wastewater treatment.


Asunto(s)
Percepción de Quorum , Aguas Residuales , Reactores Biológicos , Desnitrificación , Nitratos , Aguas Residuales/análisis
20.
Water Sci Technol ; 80(8): 1399-1406, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31961802

RESUMEN

Searching for efficient and inexpensive catalysts to replace precious metal-based catalyst in air-cathode microbial fuel cells is crucial for the practical application and commercialization in wastewater treatment and energy generation. Here, through a simple pyrolysis process, sewage sludge could be converted into carbon material with hierarchically porous structure, which demonstrates oxygen reduction reaction (ORR) catalytic performance. Subsequently, co-doping Mn and N species on the carbonized sewage sludge matrix could further improve the ORR catalytic performance, which even demonstrates comparable performance to the commercial expensive Pt/C catalyst in air-cathode microbial fuels cells (MFC). The highest maximum power density of MFC with Mn-N/SC air-cathode is as high as 1,120 mW m-2, which is similar to the power density of the air-cathode MFC equipped commercialized Pt/C catalyst (1,240 mW m-2). Considering the simple operation, significant cost-saving and easy scale-up of the proposed 'trash-to-treasure' method, it is promising to convert harmful sewage sludge into efficient non-platinum cathode catalysts in microbial fuel cells.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbono , Catálisis , Electrodos , Manganeso , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA