RESUMEN
COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.
Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Neumonía Viral/patología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/virología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Pandemias , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Tropismo Viral , Pérdida de PesoRESUMEN
Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.
Asunto(s)
Quirópteros , Interferón Tipo I , Quirópteros/inmunología , Quirópteros/genética , Quirópteros/virología , Animales , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Humanos , Antivirales , Inmunidad Innata/genética , FilogeniaRESUMEN
Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.
Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Neumonía Viral/epidemiología , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/sangre , Betacoronavirus/metabolismo , Betacoronavirus/ultraestructura , COVID-19 , Línea Celular , China/epidemiología , Chlorocebus aethiops , Femenino , Genoma Viral/genética , Humanos , Masculino , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Homología de Secuencia de Ácido Nucleico , Síndrome Respiratorio Agudo Grave , Células VeroRESUMEN
BACKGROUND: In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS: Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION: Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.
Asunto(s)
Cromatina , Codorniz , Animales , Masculino , Estaciones del Año , Codorniz/genética , Cromatina/genética , Cromatina/metabolismo , Hipotálamo/metabolismo , Reproducción/genética , FotoperiodoRESUMEN
Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.
Asunto(s)
Quirópteros , Ratones , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones/virología , Quirópteros/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Ratones Endogámicos BALB C , COVID-19/mortalidad , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/mortalidad , Pase Seriado , Antivirales/farmacología , Antivirales/uso terapéutico , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/uso terapéutico , Zoonosis Virales/tratamiento farmacológico , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/virología , Envejecimiento , Evaluación Preclínica de MedicamentosRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.
Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Loratadina , Loratadina/análogos & derivados , Ratones Transgénicos , Médula Espinal , Superóxido Dismutasa-1 , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/metabolismo , Ratones , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Loratadina/farmacología , Loratadina/uso terapéutico , Humanos , Receptor de Serotonina 5-HT2A/metabolismo , Modelos Animales de Enfermedad , Masculino , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Ratones Endogámicos C57BLRESUMEN
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 µM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-ß/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.
RESUMEN
Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.
Asunto(s)
Loratadina , Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Animales , Masculino , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Ratones , Paclitaxel/efectos adversos , Loratadina/análogos & derivados , Loratadina/farmacología , Loratadina/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Antagonistas de los Receptores Histamínicos H1 no Sedantes/uso terapéutico , Hipersensibilidad a las Drogas/tratamiento farmacológico , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: There have been only few reports on Rhupus syndrome with severe visceral involvement. Moreover, there was little consensus regarding its treatment. Belimumab is one of the options for treating this disease. For patients with clinical symptoms and elevated levels of anti CCP antibodies and anti-double stranded DNA antibodies, and it suggests Rhupus syndrome. After effective treatment, the decrease in levels of anti CCP antibodies and anti-double stranded DNA (ds-DNA) antibodies can effectively delay the progression of the disease and protect target organs. METHODS: We used a chemiluminescence instrument, (Yahuilong; Shenzhen, China), to measure the changes in CCP and dsDNA before and after treatment. RESULTS: Prior to treatment, the patient presented with symptoms of rheumatoid arthritis and systemic lupus erythematosus. Her laboratory tests showed dsDNA (214 IU/mL) and CCP level of Ë 3,000 U/mL. After treatment with belimumab, the clinical symptoms were significantly relieved, and the patient's CCP IgG level decreased to 263.5 U/mL. A blood test found that her anti-dsDNA was negative. CONCLUSIONS: CCP and dsDNA can serve as indicators for the diagnosis and treatment of Rhupus syndrome.
Asunto(s)
Anticuerpos Antinucleares , Anticuerpos Monoclonales Humanizados , ADN , Humanos , Femenino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Antinucleares/sangre , Anticuerpos Antinucleares/inmunología , ADN/inmunología , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/sangre , Persona de Mediana Edad , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Artritis Reumatoide/sangre , Inmunosupresores/uso terapéutico , Resultado del Tratamiento , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Adulto , Biomarcadores/sangreRESUMEN
OBJECTIVE: The incidence of recurrent hernia after radical resection of prostate cancer is high, so this article discusses the incidence and risk factors of inguinal hernia after radical resection of prostate cancer. METHODS: This case control study was conducted in The First People's Hospital of Huzhou clinical data of 251 cases underwent radical resection of prostate cancer in this hospital from March 2019 to May 2021 were retrospectively analyzed. According to the occurrence of inguinal hernia, the subjects were divided into study group and control group, and the clinical data of each group were statistically analyzed, Multivariate Logistic analysis was performed to find independent influencing factors for predicting the occurrence of inguinal hernia. The Kaplan-Meier survival curve was drawn according to the occurrence and time of inguinal hernia. RESULTS: The overall incidence of inguinal hernia after prostate cancer surgery was 14.7% (37/251), and the mean time was 8.58 ± 4.12 months. The average time of inguinal hernia in patients who received lymph node dissection was 7.61 ± 4.05 (month), and that in patients who did not receive lymph node dissection was 9.16 ± 4.15 (month), and there was no significant difference between them (P > 0.05). There were no statistically significant differences in the incidence of inguinal hernia with age, BMI, hypertension, diabetes, PSA, previous abdominal operations and operative approach (P > 0.05), but there were statistically significant differences with surgical method and pelvic lymph node dissection (P < 0.05). The incidence of pelvic lymph node dissection in the inguinal hernia group was 24.3% (14/57), which was significantly higher than that in the control group 11.8% (23/194). Logistic regression analysis showed that pelvic lymph node dissection was a risk factor for inguinal hernia after prostate cancer surgery (OR = 0.413, 95%Cl: 0.196-0.869, P = 0.02). Kaplan-Meier survival curve showed that the rate of inguinal hernia in the group receiving pelvic lymph node dissection was significantly higher than that in the control group (P < 0.05). CONCLUSION: Pelvic lymph node dissection is a risk factor for inguinal hernia after radical resection of prostate cancer.
Asunto(s)
Hernia Inguinal , Complicaciones Posoperatorias , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Hernia Inguinal/epidemiología , Hernia Inguinal/cirugía , Neoplasias de la Próstata/cirugía , Factores de Riesgo , Incidencia , Estudios de Casos y Controles , Anciano , Persona de Mediana Edad , Prostatectomía/efectos adversos , Prostatectomía/métodos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Escisión del Ganglio Linfático , Correlación de DatosRESUMEN
OBJECTIVE: The study aimed to evaluate the short-term clinical efficacy of percutaneous full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF) for lumbar degenerative diseases (LDD). METHODS: From July 2020 to July 2021, 93 patients who underwent single-level lumbar fusion procedure were retrospective analysis. The patients were divided into Endo-TLIF group and transforaminal lumbar interbody fusion (TLIF) group. General demographic and perioperative data were recorded, the clinical outcomes were evaluated using visual analogue scale (VAS) and oswestry disability index (ODI). The disk height (DH) was compared between the two groups. RESULTS: All of the surgical procedures were successfully completed, and the patients were followed for a minimum of 2 years. Intraoperative blood loss, drainage volume, time to independent ambulation and hospital length of stay in the Endo-TLIF group were significantly decreased in comparison with the open TLIF group (p < 0.05). The VAS for back pain on postoperative 7 day and ODI on postoperative 1 month were lower in the Endo-TLIF group than in the open TLIF group (P < 0.05), but no significant difference at 1 year and 2 years postoperatively (P > 0.05). The VAS score of leg pain had no demographic statistically significant differences between the groups (P > 0.05). The DH were significantly heightened after surgery compared to the preoperative height (p < 0.05). CONCLUSION: Endo-TLIF is a minimally invasive, safety surgery which can achieve comparable short-term effects as open TLIF. It may be a promising option for the treatment of LDD.
Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Humanos , Estudios Retrospectivos , Vértebras Lumbares/cirugía , Fusión Vertebral/métodos , Endoscopía , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Resultado del TratamientoRESUMEN
PURPOSE: To investigate the clinical results and radiological parameters changes after unilateral-approach endoscopic lumbar interbody fusion (Endo-LIF) for lumbar spondylolisthesis with bilateral symptoms. METHODS: 43 single-level lumbar spondylolisthesis patients with bilateral lower limb symptoms were included from June 2020 to May 2022. All patients underwent unilateral-approach Endo-LIF and postoperative computed tomography. Radiological parameters including disk height (DH), degree of upper vertebral slip (DUVS), and foramen intervertebral parameters including bilateral foraminal height (FH), contralateral foraminal areas (FA) were evaluated. The clinical outcomes including low back pain and bilateral leg pain were evaluated using Visual Analog Scale (VAS) and the Oswestry Disability Index (ODI) before and after surgery. RESULTS: All cases were successfully completed surgery and followed for average 15.16 ± 5.2 months. DH (44% ± 11%) and DUVS were significantly improvement postoperatively compared with preoperatively (p < 0.05). Statistically significant increases in bilateral FH (25% ± 11% on the surgical side, 17% ± 8% on the contralateral side) and contralateral FA (26% ± 6%) were observed (p < 0.05). The VAS and the ODI scores were significantly decreased in comparison with the preoperative scores (p < 0.05). CONCLUSION: Unilateral-approach with contralateral indirect decompression in Endo-LIF can acquire satisfactory clinical outcomes. Therefore, unilateral-approach Endo-LIF may be a promising option for lumbar spondylolisthesis with bilateral symptoms.
Asunto(s)
Dolor de la Región Lumbar , Espondilolistesis , Humanos , Espondilolistesis/complicaciones , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/cirugía , Endoscopía , Región Lumbosacra , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/cirugía , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Lip squamous cell carcinoma (LSCC) was one of the most common cancer types of head and neck tumors. This study aimed to find more predictors of the prognosis in postoperative LSCC patients. METHODS: A total of 147 LSCC patients between June 2012 and June 2018 were collected from two tertiary care institutions. There were 21 clinicopathological factors included and analyzed in our study. The univariate and multivariate Cox regression analyses were performed to find the independent prognostic factors for predicting progression-free survival (PFS) and overall survival (OS) in postoperative LSCC patients. The role of adjuvant radiotherapy in various subgroups was displayed by Kaplan-Meier plots. RESULTS: The 1-, 3-, and 5-year PFS of postoperative LSCC patients were 88.4%, 70.1%, and 57.8%, respectively. Similarly, the 1-, 3-, and 5-year OS of postoperative LSCC patients were 94.6%, 76.9%, and 69.4%, respectively. The results suggested that postoperative LSCC patients with age at diagnosis ≥ 70 years, grade with moderate or poor differentiate, the American Joint Committee on Cancer (AJCC) stage IV, higher systemic immune-inflammation index (SII), surgical margin < 5, and age-adjusted Charlson Comorbidity Index (ACCI) ≥ 5 tend to have a poorer PFS (all P < 0.05). Besides, postoperative LSCC patients with age at diagnosis ≥ 70 years, AJCC stage IV, higher GPS, higher SII, and ACCI ≥ 5 tend to have a worse OS (all P < 0.05). Additionally, postoperative patients with LSCC in the subgroup of ACCI < 5 and AJCC III-IV stage was more likely to benefit from adjuvant radiotherapy, but not for the other subgroups. CONCLUSION: We identified a series of significant immune-inflammation-related and comorbidity-related clinicopathological factors associated with the prognosis of postoperative LSCC patients by local data from two tertiary care institutions in China, which can be helpful for patients and surgeons to pay more attention to nutrition, inflammation, and complications and finally obtained a better prognosis.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , Humanos , Anciano , Pronóstico , Labio , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Inflamación , Neoplasias Laríngeas/patología , Estudios RetrospectivosRESUMEN
Nucleic acid modifications play important roles in biological activities and disease occurrences, and have been considered as cancer biomarkers. Due to the relatively low amount of nucleic acid modifications in biological samples, it is necessary to develop sensitive and reliable qualitative and quantitative methods to reveal the content of any modifications. In this review, the key processes affecting the qualitative and quantitative analyses are discussed, such as sample digestion, nucleoside extraction, chemical labeling, chromatographic separation, mass spectrometry detection, and data processing. The improvement of the detection sensitivity and specificity of analytical methods based on mass spectrometry makes it possible to study low-abundance modifications and their biological functions. Some typical nucleic acid modifications and their potential as biomarkers are displayed, and efforts to improve diagnostic accuracy are discussed. Future perspectives are raised for this research field.
Asunto(s)
Ácidos Nucleicos , Espectrometría de Masas/métodos , Biomarcadores de TumorRESUMEN
BACKGROUND: Domestic geese are seasonal breeders and have the lowest reproductive capacity among all poultry species. Magang geese is a topical short-day breeder, short photoperiod exposure stimulates its reproductive activity while long photoperiod inhibits. To explore epigenetic change that could influence reproductive activity, we performed whole genome bisulfite sequencing and transcriptome sequencing in the hypothalamus at three reproductive stages during long-light exposure in male Magang geese. RESULTS: A total number of 10,602 differentially methylated regions (DMRs) were identified among three comparison groups. We observed that the vast majority of DMRs were enriched in intron regions. By integrating the BS-sequencing and RNA-seq data, the correlation between methylation changes of CG DMRs and expression changes of their associated genes was significant only for genes containing CG DMRs in their intron. A total of 278 DMR-associated DEGs were obtained among the three stages. KEGG analysis revealed that the DMR-associated DEGs were mainly involved in 11 pathways. Among them, the neuroactive ligand-receptor interaction pathway was significantly enriched in both two comparisons (RA vs.RD and RD vs.RI); the Wnt signaling pathway, apelin signaling pathway, melanogenesis, calcium signaling pathway, focal adhesion, and adherens junction were significantly enriched in the RA vs. RI comparison. In addition, the expression level of two serotonin-metabolic genes was significantly altered during reproductive axis inactivation by the methylation status of their promoter region (TPH2) and intron region (SLC18A2), respectively. These results were confirmed by Bisulfite sequencing PCR (BSP), pyrosequencing, and real-time qPCR, indicating that serotonin metabolic signaling may play a key role in decreasing the reproductive activity of Magang geese induced by long-light exposure. Furthermore, we performed a metabolomics approach to investigate the concentration of neurotransmitters among the three stages, and found that 5-HIAA, the last product of the serotonin metabolic pathway, was significantly decreased in the hypothalamus during RI. CONCLUSIONS: Our study reveals that the methylation status of the serotonin metabolic pathway in the hypothalamus is associated with reproductive inactivation, and provided new insight into the effect of DNA methylation on the reproductive regulation of the hypothalamus in Magang geese.
Asunto(s)
Metilación de ADN , Gansos , Animales , Masculino , Gansos/genética , Serotonina , Redes y Vías MetabólicasRESUMEN
The effective enrichment and hypersensitivity analysis of circulating tumor cells (CTCs) in clinical whole blood samples are highly significant for clinical tumor liquid biopsy. In this study, we established an easy operation and affordable CTCs extraction technique while simultaneously performing the homogeneous inductively coupled plasma mass spectrometry (ICP-MS) determination of CTCs in lung cancer clinical samples based on selective recognition reactions and prereduction phenomena. Our strategy allowed for the pretreatment of whole blood samples in less than 45 min after step-by-step centrifugation, which only required lymphocyte separation solution and erythrocyte lysate. Furthermore, a three-stage signal amplification system consisting of catalytic hairpin assembly (CHA), selective recognition for C-Ag+-C structures and Ag+ of copper sulfide nanoparticles (CuS NPs), and prereduction of Hg2+ through ascorbic acid (AA) was constructed by using mucin 1 as the CTCs marker and the aptamer for identification probes. In optimal conditions, the detection limits of ICP-MS were as low as 0.3 ag/mL for mucin 1 and 0.25 cells/mL for A549 cells. This method analyzed CTCs in 58 clinical samples quantitatively, and the results were consistent with clinical CT images and pathological findings. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.957, which provided a specificity of 100% and a sensitivity of 91.5% for the assay. Therefore, the simplicity of the extraction method, the accessibility, and the high sensitivity of the assay method make the strategies attractive for clinical CTCs testing applications.
Asunto(s)
Neoplasias Pulmonares , Mucina-1 , Humanos , Neoplasias Pulmonares/diagnóstico , Células A549 , Área Bajo la Curva , Biopsia LíquidaRESUMEN
Succination is a nonenzymatic and irreversible post-translational modification (PTM) with important biological significance, yielding S-(2-succino) cysteine (2SC) residue. This PTM is low in abundance and often requires a large amount of protein samples for 2SC quantification. In this work, an efficient quantification method based on ethanol/acetyl chloride chemical derivatization was developed. The three carboxyl groups of 2SC were all esterified to increase hydrophobicity, greatly improving its ionization efficiency. The sensitivity was increased by 112 times; the limit of detection was reduced to 0.885 fmol, and the protein usage was reduced by at least 10 times. The established method was used to detect the overall concentration of 2SC in fumarate accumulation cells quantitatively.
RESUMEN
Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.
Asunto(s)
COVID-19 , Pulmón , Neutrófilos , Animales , COVID-19/inmunología , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Pulmón/virología , Linfopenia/virología , Ratones , Neutrófilos/inmunología , SARS-CoV-2 , Bazo/patología , Bazo/virologíaRESUMEN
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that can give rise to joint swelling and inflammation, potentially affecting the entire body, closely linked to the state of T cells. The T-cell activation Rho GTPase activating protein (TAGAP) is associated with many autoimmune diseases including RA and is directly linked to the differentiation of Th17 cells. The present study intends to investigate the influence of TAGAP on the RA progression and its mechanism to empower new treatments for RA. A collagen-induced-arthritis (CIA) rat model was constructed, as well as the extraction of CD4+ T cells. RT-qPCR, H&E staining and safranin O/fast green staining revealed that TAGAP interference reduced TAGAP production in the ankle joint of CIA rats, and joint inflammation and swelling were alleviated, which reveals that TAGAP interference reduces synovial inflammation and cartilage erosion in the rat ankle joint. Expression of inflammatory factors (TNF-α, IL-1ß, and IL-17) revealed that TAGAP interference suppressed the inflammatory response. Expression of pro-inflammatory cytokines, matrix-degrading enzymes, and anti-inflammatory cytokines at the mRNA level was detected by RT-qPCR and revealed that TAGAP interference contributed to the remission of RA. Mechanistically, TAGAP interference caused a significant decrease in the levels of RhoA and NLRP3. Assessment of Th17/Treg levels by flow cytometry revealed that TAGAP promotes Th17 cells differentiation and inhibits Treg cells differentiation in vitro and in vivo. In conclusion, TAGAP interference may decrease the differentiation of Th17 cells by suppressing the expression of RhoA and NLRP3 to slow down the RA progression.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Células Th17 , Inflamación , Citocinas/metabolismo , Diferenciación CelularRESUMEN
BACKGROUND: Alzheimer disease (AD) and depression often cooccur, and inhibition of phosphodiesterase-4 (PDE4) has been shown to ameliorate neurodegenerative illness. Therefore, we explored whether PDE4 inhibitor rolipram might also improve the symptoms of comorbid AD and depression. METHODS: APP/PS1/tau mice (10 months old) were treated with or without daily i.p. injections of rolipram for 10 days. The animal groups were compared in behavioral tests related to learning, memory, anxiety, and depression. Neurochemical measures were conducted to explore the underlying mechanism of rolipram. RESULTS: Rolipram attenuated cognitive decline as well as anxiety- and depression-like behaviors. These benefits were attributed at least partly to the downregulation of amyloid-ß, Amyloid precursor protein (APP), and Presenilin 1 (PS1); lower tau phosphorylation; greater neuronal survival; and normalized glial cell function following rolipram treatment. In addition, rolipram upregulated B-cell lymphoma-2 (Bcl-2) and downregulated Bcl-2-associated X protein (Bax) to reduce apoptosis; it also downregulated interleukin-1ß, interleukin-6, and tumor necrosis factor-α to restrain neuroinflammation. Furthermore, rolipram increased cAMP, PKA, 26S proteasome, EPAC2, and phosphorylation of ERK1/2 while decreasing EPAC1. CONCLUSIONS: Rolipram may mitigate cognitive deficits and depression-like behavior by reducing amyloid-ß pathology, tau phosphorylation, neuroinflammation, and apoptosis. These effects may be mediated by stimulating cAMP/PKA/26S and cAMP/exchange protein directly activated by cAMP (EPAC)/ERK signaling pathways. This study suggests that PDE4 inhibitor rolipram can be an effective target for treatment of comorbid AD and depression.