Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2220697120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888658

RESUMEN

The ocean is a net source of the greenhouse gas and ozone-depleting substance, nitrous oxide (N2O), to the atmosphere. Most of that N2O is produced as a trace side product during ammonia oxidation, primarily by ammonia-oxidizing archaea (AOA), which numerically dominate the ammonia-oxidizing community in most marine environments. The pathways to N2O production and their kinetics, however, are not completely understood. Here, we use 15N and 18O isotopes to determine the kinetics of N2O production and trace the source of nitrogen (N) and oxygen (O) atoms in N2O produced by a model marine AOA species, Nitrosopumilus maritimus. We find that during ammonia oxidation, the apparent half saturation constants of nitrite and N2O production are comparable, suggesting that both processes are enzymatically controlled and tightly coupled at low ammonia concentrations. The constituent atoms in N2O are derived from ammonia, nitrite, O2, and H2O via multiple pathways. Ammonia is the primary source of N atoms in N2O, but its contribution varies with ammonia to nitrite ratio. The ratio of 45N2O to 46N2O (i.e., single or double labeled N) varies with substrate ratio, leading to widely varying isotopic signatures in the N2O pool. O2 is the primary source for O atoms. In addition to the previously demonstrated hybrid formation pathway, we found a substantial contribution by hydroxylamine oxidation, while nitrite reduction is an insignificant source of N2O. Our study highlights the power of dual 15N-18O isotope labeling to disentangle N2O production pathways in microbes, with implications for interpretation of pathways and regulation of marine N2O sources.


Asunto(s)
Amoníaco , Archaea , Archaea/metabolismo , Amoníaco/metabolismo , Nitrificación , Nitritos/metabolismo , Marcaje Isotópico , Oxígeno/metabolismo , Oxidación-Reducción , Óxido Nitroso/metabolismo
2.
Small ; 20(6): e2304563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786270

RESUMEN

It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.

3.
Small ; : e2404231, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943438

RESUMEN

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

4.
Am Heart J ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942221

RESUMEN

BACKGROUND: It is currently uncertain whether the combination of a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor and high-intensity statin treatment can effectively reduce cardiovascular events in patients with acute coronary syndrome (ACS) who have undergone percutaneous coronary intervention (PCI) for culprit lesions. METHODS: This study protocol describes a double-blind, randomized, placebo-controlled, multicenter study aiming to investigate the efficacy and safety of combining a PCSK9 inhibitor with high-intensity statin therapy in patients with ACS following PCI. A total of 1212 patients with ACS and multiple lesions will be enrolled and randomly assigned to receive either PCSK9 inhibitor plus high-intensity statin therapy or high-intensity statin monotherapy. The randomization process will be stratified by sites, diabetes, initial presentation and use of stable (≥4 weeks) statin treatment at presentation. PCSK 9 inhibitor or its placebo is injected within 4 hours after PCI for the culprit lesion. The primary endpoint is the composite of cardiovascular death, myocardial infarction, stroke, re-hospitalization due to ACS or heart failure, or any ischemia-driven coronary revascularization at one-year follow-up between two groups. Safety endpoints mean PCSK 9 inhibitor and statin intolerance. CONCLUSION: The SHAWN study has been specifically designed to evaluate the effectiveness and safety of adding a PCSK9 inhibitor to high-intensity statin therapy in patients who have experienced ACS following PCI. The primary objective of this study is to generate new evidence regarding the potential benefits of combining a PCSK9 inhibitor with high-intensity statin treatment in reducing cardiovascular events among these patients.

5.
Fungal Genet Biol ; 173: 103908, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38857848

RESUMEN

Reductive assimilation pathway involves ferric reductase and ferrous iron transporter, which is integral for fungal iron acquisition. A family of ferric reductase-like proteins has been functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. In this investigation, two ferrous iron transporter-like proteins (Ftr) were functionally annotated in B. bassiana. BbFtr1 and BbFtr2 displayed high similarity in structure and were associated with the plasma and nuclear membrane. Their losses had no negatively influence on fungal growth on various nutrients and development under the iron-replete condition. Single mutants of BbFTR1 and BbFTR2 displayed the iron-availability dependent developmental defects, and double mutant exhibited the significantly impaired developmental potential under the iron-limited conditions. In insect bioassay, the double mutant also showed the weaker virulence than either of two single disruption mutants. These results suggested that two ferrous iron transporter-like proteins function independently in fungal physiologies under the iron-deficient condition. Intriguingly, a bZIP transcription factor BbHapX was required for expression of BbFTR1 and BbFTR2 under iron-depleted conditions. This study enhances our understanding of the iron uptake system in the filamentous entomopathogenic fungi.

6.
Chemistry ; 30(28): e202400352, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470164

RESUMEN

The utilization of a magnetic field to manipulate spin states has emerged as a novel approach to enhance efficiency in electrocatalytic reactions, distinguishing from traditional strategies that focus on tuning activation energy barriers. Currently, this approach is specifically tailored to reactions where spin states change during the catalytic process, such as the oxidation of singlet H2O to triplet O2. In the magnetically enhanced oxygen evolution reaction (OER) procedure, the parallel spin alignment on the ferromagnetic catalyst was induced by the external magnetic field, facilitating the triplet O-O bonding, which is the rate limiting step in OER. This review centers on recent advancements in harnessing external magnetic fields to enhance OER performance, delving into mechanistic approaches for this magnetic promotion. Additionally, we provide a summary of magnetic field application in other electrocatalytic reactions, including oxygen reduction, methanol oxidation, and CO2 reduction.

7.
Eur J Clin Microbiol Infect Dis ; 43(2): 389-393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062176

RESUMEN

The OXA-48-producing hypervirulent Klebsiella pneumoniae (hvKP) strains were rarely reported. In this study, we characterized three carbapenem-resistant hvKP strains (KP2185, NCRE61, and KP2683-1) isolated from renal abscess, scrotal abscess, and blood samples in a Taiwan hospital. The three strains belonged to two different clones: ST23 K1 (KP2683-1) and ST11 KL64 (KP2185 and NCRE61). KP2683-1 exhibited the highest virulence in an in vivo model. Whole-genome sequencing analysis showed that KP2185 and NCRE61 acquired IncFIB type plasmids containing a set of virulence genes (iroBCDN, iucABCD, rmpA, rmpA2, and iutA), while KP2683-1 acquired an IncL type plasmid harboring blaOXA-48.


Asunto(s)
Infecciones por Klebsiella , beta-Lactamasas , Humanos , beta-Lactamasas/genética , Klebsiella pneumoniae , Taiwán/epidemiología , Absceso , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Plásmidos/genética , Antibacterianos/farmacología
8.
Curr Microbiol ; 81(8): 249, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951199

RESUMEN

Beauveria bassiana, the causative agent of arthropod, proliferates in the host hemolymph (liquid environment) and shits to saprotrophic growth on the host cadaver (aerial surface). In this study, we used transcriptomic analysis to compare the gene expression modes between these two growth phases. Of 10,366 total predicted genes in B. bassiana, 10,026 and 9985 genes were expressed in aerial (AM) and submerged (SM) mycelia, respectively, with 9853 genes overlapped. Comparative analysis between two transcriptomes indicated that there were 1041 up-regulated genes in AM library when compared with SM library, and 1995 genes were down-regulated, in particular, there were 7085 genes without significant change in expression between two transcriptomes. Furthermore, of 25 amidase genes (AMD), BbAMD5 has high expression level in both transcriptomes, and its protein product was associated with cell wall in aerial and submerged mycelia. Disruption of BbAMD5 significantly reduced mycelial hydrophobicity, hydrophobin translocation, and conidiation on aerial plate. Functional analysis also indicated that BbAmd5 was involved in B. bassiana blastospore formation in broth, but dispensable for fungal virulence. This study revealed the high similarity in global expression mode between mycelia grown under two cultivation conditions.


Asunto(s)
Beauveria , Proteínas Fúngicas , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Micelio , Transcriptoma , Beauveria/genética , Beauveria/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/crecimiento & desarrollo , Micelio/genética , Animales , Virulencia/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
9.
BMC Anesthesiol ; 24(1): 7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166634

RESUMEN

BACKGROUND: Stellate ganglion block (SGB) has been shown to reduce perioperative complications in various surgeries. Because laparoscopic techniques and instruments have advanced during the past two decades, laparoscopic liver resection is being increasingly adopted worldwide. Lesser blood loss, fewer postoperative complications, and shorter postoperative hospital stays are the advantages of laparoscopic liver resection, as compared to conventional open surgery. There is an urgent need for an effective intervention to reduce perioperative complications and accelerate postoperative recovery. This study investigated the effect of ultrasound-guided SGB on enhanced recovery after laparoscopic partial hepatectomy. METHODS: We compared patients who received SGB with 0.5% ropivacaine (group S) with those who received SGB with 0.9% saline (group N). A total of 58 patients with partial hepatectomy were enrolled (30 S) and (28 N). Before induction of anesthesia, SGB was performed with 0.5% ropivacaine in group S and 0.9% saline in group N. MAIN OUTCOME: Comparison of serum inflammatory cytokines concentration at each time point. RESULTS: Main outcome: When comparing IL-6 and IL-10 concentrations among groups, group S showed less variation over time compared to group N. For comparison between groups, the serum IL-6 concentration in group S was lower than that in group N at 6 and 24 h after operation (P < 0.01), and there was a significant linear relationship between serum IL-6 concentration at 24 h after operation and hospitalization situation. CONCLUSIONS: Ultrasound-guided SGB can stabilize perioperative inflammatory cytokines plays a positive role in the enhanced recovery of patients after laparoscopic partial hepatectomy. The serum IL-6 level within 24 h after surgery may be used as a predictor of hospitalization. TRIAL REGISTRATION: The study was registered at the ClinicalTrials.gov (Registration date: 13/09/2021; Trial ID: NCT05042583).


Asunto(s)
Citocinas , Hepatectomía , Humanos , Ropivacaína/farmacología , Hepatectomía/métodos , Ganglio Estrellado , Interleucina-6 , Solución Salina/farmacología , Ultrasonografía Intervencional
10.
J Invertebr Pathol ; 203: 108076, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382734

RESUMEN

Beauveria bassiana is one of the most extensively studied entomopathogenic fungi (EPF) and is widely used as a biocontrol agent against various insect pests. Proteins containing the MARVEL domain are conserved in eukaryotes, typically with four transmembrane structures. In this study, we identified the five MARVEL domain proteins in B. bassiana. Five MARVEL domain proteins were localized to cytomembrane and vacuoles in B. bassiana, but had different roles in maintaining the lipid-droplet homeostasis. These proteins were required for fungal virulence, but differentially contributed to fungal utilization of nutrients, stress tolerance, and development under aerial and submerged conditions. Notably, BbMARVEL2 was essential for conidial surface morphology. Additionally, these five MARVEL domain proteins contributed to fungal interaction with the host immune defense. This study provides new mechanistic insights into the life cycle of B. bassiana as a biocontrol agent.


Asunto(s)
Beauveria , Animales , Virulencia , Proteínas Fúngicas/metabolismo , Insectos/microbiología , Proteínas con Dominio MARVEL/metabolismo , Esporas Fúngicas
11.
Phytochem Anal ; 35(5): 1036-1051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38487966

RESUMEN

INTRODUCTION: Fructus Tribuli, the dried ripe fruit of Tribulus terrestris L., has various beneficial effects, including liver-calming and depression-relieving effects. Raw Fructus Tribuli (RFT) and stir-fried Fructus Tribuli (SFT) are included in the Chinese Pharmacopoeia 2020 edition (Ch. P 2020). However, owing to the lack of specific regulations on SFT-processing parameters in Ch. P 2020, it is difficult to ensure the quality of commercially available SFT. OBJECTIVE: The present study aimed to screen the quality markers (Q-markers) of RFT and SFT and optimize the processing technology of SFT based on the identified Q-markers. METHODS: First, the ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) technology as well as multiple statistical analysis along with network pharmacology was used to comprehensively identify the Q-markers of RFT and SFT. Then, based on single-factor experiments, the Box-Behnken design (BBD) response surface methodology (RSM) was used to optimize the processing technology of SFT and perform process validation. RESULTS: A total of 63 components were identified in RFT and SFT extracts. Terrestrosin D and Terrestrosin K were initially considered the Q-markers of RFT and SFT, respectively. The optimum processing technology conditions were 208°C, 14 min, and 60 r·min-1. Three batches of process validation were performed, and the mean composite score was 56.87, with a relative standard deviation (RSD) value of 1.13%. CONCLUSION: The content of steroidal saponin components in RFT was significantly different before and after stir-frying. Terrestrosin D and Terrestrosin K were validated as the Q-markers of RFT and SFT, respectively. The identification of Q-markers for RFT and SFT offered a clear index for optimizing the SFT-processing technology and provided a basis for the quality control of RFT and SFT decoction pieces.


Asunto(s)
Farmacología en Red , Tribulus , Cromatografía Líquida de Alta Presión/métodos , Tribulus/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Quimiometría/métodos , Espectrometría de Masas/métodos , Frutas/química , Control de Calidad
12.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928117

RESUMEN

Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein-DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment.


Asunto(s)
Beauveria , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Beauveria/genética , Beauveria/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Animales , Insectos/microbiología , Esporas Fúngicas/genética , Regiones Promotoras Genéticas
13.
Int Wound J ; 21(1): e14403, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37735819

RESUMEN

This analysis systematically reviewed the efficacy of evidence-based care on diabetic foot ulcers. A computerised literature search was conducted for randomised controlled studies (RCTs) of evidence-based care interventions for the treatment of diabetic foot ulcers using the PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), China Biomedical Literature Database (CBM) and Wanfang databases from the date of inception of each database to June 2023. The articles were independently screened, data were extracted by two researchers, and the quality of each study was assessed using the Cochrane bias assessment tool. Meta-analysis of the data was performed using RevMan 5.4 software. Twenty-five RCTs with a total of 2272 patients were included. Meta-analysis showed that, compared with other care methods, evidence-based care significantly improved the treatment efficacy of diabetic foot ulcers (odds ratio: 3.91, 95% confidence interval [CI]: 2.76 to 5.53, p < 0.001) and significantly reduced their fasting plasma glucose (mean difference [MD]: -1.10, 95% CI: -1.24 to -0.96, p < 0.001), 2-h postprandial glucose (2hPG) (MD: -1.69, 95% CI: -2.07 to -1.31, p < 0.001) and glycated haemoglobin (HbA1c) (MD: -0.71, 95% CI: -0.94 to -0.48, p < 0.001). Evidence-based care intervention is effective at reducing FPG, 2hPG and HbA1c levels and improving treatment efficacy in patients with diabetic foot ulcers.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/terapia , Medicina Basada en la Evidencia , Hemoglobina Glucada , Resultado del Tratamiento , China
14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2619-2628, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812162

RESUMEN

Nontraumatic avascular necrosis of the femoral head(NANFH) is a common and refractory femoral head disease that causes bone death due to interruption of blood supply. Early clinical symptoms are atypical, such as hip pain and limited joint function. In the late stage, severe pain, shortening of the affected limb, claudication, and other serious symptoms are common, which se-riously affects the quality of life of patients. Therefore, it is of great significance to actively improve the clinical symptoms of NANFH to enhance the quality of life of patients. The pathogenesis of NANFH is complex, such as traumatic vascular circulatory disorders, the use of hormones or other drugs, alcoholism, and diabetes mellitus. These factors directly or indirectly lead to femoral head vascular damage, thrombosis, and coagulation system disorders, which reduce the blood supply to the acetabulum and femoral head, thus causing ischaemic death of the femoral head or even femoral head collapse. NANFH is mainly categorized as "bone impotence" and "bone paralysis" in traditional Chinese medicine(TCM). The treatment of NANFH with TCM has the characteristics and advantages of a long history, stable and reliable therapeutic effect, fewer adverse reactions, good patient tolerance, and high acceptance. Previous studies have shown that the promotion of angiogenesis is a key initiative in the prevention and treatment of NANFH, and TCM can promote fe-moral head angiogenesis by interfering with the expression of angiogenesis-related factors, which in turn can help to restore the blood supply of the femoral head and thus improve clinical symptoms of NANFH and prevent and treat NANFH. This article described the roles of blood supply interruption and angiogenesis in NANFH and the accumulated knowledge and experience of TCM in NANFH and summarized the role of angiogenesis-related factors in NANFH and the research progress on TCM intervention, so as to provide an idea for the subsequent research and a new basis for the clinical application of TCM in the treatment of NANFH.


Asunto(s)
Medicamentos Herbarios Chinos , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/prevención & control , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/administración & dosificación , Medicina Tradicional China , Animales , Cabeza Femoral/irrigación sanguínea , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Angiogénesis
15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621984

RESUMEN

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Especies Reactivas de Oxígeno , Ratas Sprague-Dawley , Caspasa 3/metabolismo , Transducción de Señal , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , ARN Mensajero , Apoptosis
16.
Angew Chem Int Ed Engl ; 63(7): e202317969, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38155103

RESUMEN

Photocatalytic conversion of CO2 and H2 O into fuels and oxygen is a highly promising solution for carbon-neutral recycling. Traditionally, researchers have studied CO2 reduction and H2 O oxidation separately, overlooking potential synergistic interplay between these processes. This study introduces an innovative approach, spatial synergy, which encourages synergistic progress by bringing the two half-reactions into atomic proximity. To facilitate this, we developed a defective ZnIn2 S4 -supported single-atom Cu catalyst (Cu-SA/D-ZIS), which demonstrates remarkable catalytic performance with CO2 reduction rates of 112.5 µmol g-1 h-1 and water oxidation rates of 52.3 µmol g-1 h-1 , exhibiting a six-fold enhancement over D-ZIS. The structural characterization results indicated that the trapping effect of vacancy associates on single-atom copper led to the formation of an unsaturated coordination structure, Cu-S3 , consequently giving rise to the CuZn 'VS ⋅⋅VZn " defect complexes. FT-IR studies coupled with theoretical calculations reveal the spatially synergistic CO2 reduction and water oxidation on CuZn 'VS ⋅⋅VZn ", where the breakage of O-H in water oxidation is synchronized with the formation of *COOH, significantly lowering the energy barrier. Notably, this study introduces and, for the first time, substantiates the spatial synergy effect in CO2 reduction and H2 O oxidation through a combination of experimental and theoretical analyses, providing a fresh insight in optimizing photocatalytic system.

17.
Angew Chem Int Ed Engl ; 63(24): e202403980, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588065

RESUMEN

Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3 - and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmol ⋅ g-1 ⋅ h-1 and a Faradaic efficiency of 48.88 % at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15 %, the Faradaic efficiency of urea synthesis remains robust at 42.33 %. The tandem reduction procedure was further confirmed by in situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.

18.
Angew Chem Int Ed Engl ; 63(29): e202405873, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709722

RESUMEN

The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.

19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 139-144, 2024 Feb 15.
Artículo en Zh | MEDLINE | ID: mdl-38436310

RESUMEN

OBJECTIVES: To explore the clinical manifestations, endoscopic findings, histopathological changes, treatment, and prognosis of eosinophilic gastrointestinal disease (EGID) in children, with the aim of enhancing awareness among pediatricians about this condition. METHODS: Data of 267 children with EGID were prospectively collected from January 2019 to July 2022 at Jiangxi Children's Hospital, Hunan Children's Hospital, and Henan Children's Hospital. The age of onset, symptoms, physical signs, laboratory examination results, endoscopic findings, histopathological changes, and treatment outcomes were observed. RESULTS: Among the 267 children with EGID, the majority had mild (164 cases, 61.4%) or moderate (96 cases, 35.6%) clinical severity. The disease occurred at any age, with a higher prevalence observed in school-age children (178 cases). The main symptoms in infants were vomiting and hematemesis, while in toddlers, vomiting and bloody stools were prominent. Abdominal pain and vomiting were the primary symptoms in preschool and school-age children. Nearly half (49.4%) of the affected children showed elevated platelet counts on hematological examination, but there was no significant difference in platelet counts among children with mild, moderate, and severe EGID (P>0.05). Endoscopic findings in EGID children did not reveal significant specificity, and histopathological examination showed no specific structural damage. Among them, 85.0% (227 cases) received acid suppression therapy, 34.5% (92 cases) practiced dietary avoidance, 20.9% (56 cases) received anti-allergic medication, and a small proportion (24 cases, 9.0%) were treated with prednisone. Clinical symptoms were relieved in all patients after treatment, but three cases with peptic ulcers experienced recurrence after drug discontinuation. CONCLUSIONS: Mild and moderate EGID are more common in children, with no specific endoscopic findings. Dietary avoidance, acid suppression therapy, and anti-allergic medication are the main treatment methods. The prognosis of EGID is generally favorable in children.


Asunto(s)
Antialérgicos , Enteritis , Eosinofilia , Gastritis , Lactante , Preescolar , Humanos , Eosinofilia/diagnóstico , Eosinofilia/tratamiento farmacológico , Vómitos
20.
Curr Genet ; 69(4-6): 267-276, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37910177

RESUMEN

Peroxisomes play important roles in fungal physiological processes. The RING-finger complex consists of peroxins Pex2, Pex10, and Pex12 and is essential for recycling of receptors responsible for peroxisomal targeting of matrix proteins. In this study, these three peroxins were functionally characterized in the entomopathogenic fungus Beauveria bassiana (Bb). These three peroxins are associated with peroxisomes, in which BbPex2 interacted with BbPex10 and BbPex12. Ablation of these peroxins did not completely block the peroxisome biogenesis, but abolish peroxisomal targeting of matrix proteins via both PTS1 and PTS2 pathways. Three disruptants displayed different phenotypic defects in growth on nutrients and under stress conditions, but have similar defects in acetyl-CoA biosynthesis, development, and virulence. Strikingly, BbPex10 played a less important role in fungal growth on tested nutrients than other two peroxins; whereas, BbPex2 performed a less important contribution to fungal growth under stresses. This investigation reinforces the peroxisomal roles in the lifecycle of entomopathogenic fungi and highlights the unequal functions of different peroxins in peroxisomal biology.


Asunto(s)
Beauveria , Proteínas de la Membrana , Animales , Peroxinas , Proteínas de la Membrana/metabolismo , Beauveria/genética , Beauveria/metabolismo , Insectos , Estadios del Ciclo de Vida , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA